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Abstract 

 

Santos, Richard Bryan Magalhães; Paciornik, Sidnei (Advisor); Augusto, 

Karen Soares (Co-advisor); Iglesias, Julio Cesar Alvarez (Co-advisor). Use of 

Deep Convolutional Neural Networks in Automatic Recognition and 

Classification of Coal Macerals. Rio de Janeiro, 2022. 116p. Tese de Doutorado 

– Departamento de Engenharia Química e de Materiais, Pontifícia Universidade 

Católica do Rio de Janeiro. 

 

 

Unlike most other rocks, coal is a sedimentary rock composed primarily of 

organic matter derived from plant debris that accumulated in peat mires during 

different geological periods. Coal is also an essential economic resource in many 

countries, having been the main driving force behind the industrial revolution. 

Coal is still widely used industrially for many different purposes: carbonization 

and coke production, iron/steel making, thermal coal to generate electricity, 

liquefaction, and gasification. The utility of the coal is dictated by its properties 

which are commonly referred to as its rank, type, and grade. Coal composition, in 

terms of its macerals, and its rank determination are determined manually by a 

petrographer due to its complex nature. This study aimed to develop an automatic 

method based on machine learning capable of maceral segmentation at group level 

followed by a module for rank reflectance determination on petrographic images 

of coal that can improve the efficiency of this process and decrease operator 

subjectivity. Firstly, a Mask R-CNN-based architecture deep learning approach 

was developed to identify and segment the vitrinite maceral group, which is 

fundamental for rank analysis, as rank is determined by collotelinite reflectance 

(one of its individual macerals). Secondly, an image processing method was 

developed to analyze the vitrinite segmented images and determine coal rank by 

associating the grey values with the reflectance. For the maceral (group) 

segmentation, five samples were used to train the network, 174 images were used 

for training, and 86 were used for testing, with the best results obtained for the 

vitrinite, inertinite, liptinite, and collotelinite models (89.23%, 68.81%, 37.00% 

and 84.77% F1-score, respectively). Those samples were used alongside another 

eight samples to determine the rank results utilizing collotelinite reflectance. The 

samples ranged from 0.97% to 1.8% reflectance. This method should help save 

time and labor for analysis if implemented into a production model. The root 

mean square calculated between the proposed method and the reference 

reflectance values was 0.0978. 

 

Keywords 

Digital Image Processing; Vitrinite Reflectance; Convolutional Neural 

Networks; Coal Petrography; Maceral Analysis. 
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Resumo 

 

Santos, Richard Bryan Magalhães; Paciornik, Sidnei (Orientador); Augusto, 

Karen Soares (Coorientadora); Iglesias, Julio Cesar Alvarez (Coorientador). Uso 

de Redes Neurais Convolucionais Profundas para Reconhecimento e 

Classificação Automáticas de Macerais de Carvão. Rio de Janeiro, 2022. 116p. 

Tese de Doutorado – Departamento de Engenharia Química e de Materiais, 

Pontifícia Universidade Católica do Rio de Janeiro. 

 

Diferentemente de muitas outras rochas, o carvão é uma rocha sedimentar 

composta principalmente de matéria orgânica derivada de detritos vegetais, 

acumulados em turfeiras em diferentes períodos geológicos. O carvão é um 

recurso econômico essencial em muitos países, tendo sido a principal força motriz 

por trás da revolução industrial. O carvão é amplamente utilizado industrialmente 

para diversos fins: carbonização e produção de coque, produção de ferro/aço, 

carvão térmico para gerar eletricidade, liquefação e gaseificação. A utilização do 

carvão é ditada pelas suas propriedades que são geralmente classificadas como sua 

composição, rank e grau. A composição do carvão, em termos dos seus macerais, 

e a sua classificação são determinadas manualmente por um petrógrafo, devido à 

sua natureza complexa. Este estudo almejou desenvolver um método automático 

baseado na aprendizagem de máquina para segmentação automática de macerais a 

nível de grupo e um módulo para determinação de rank por refletância em 

imagens petrográficas do carvão que pode melhorar a eficiência deste processo e 

diminuir a subjetividade do operador. foi desenvolvida uma abordagem de 

aprendizagem profunda da arquitetura baseada na Mask R-CNN para identificar e 

segmentar o grupo de maceral vitrinite, o qual é fundamental para a análise do 

rank, uma vez que a classificação é determinada pela reflectância da collotelinite 

(maceral desse grupo). Em segundo lugar, foi desenvolvido um método de 

processamento de imagem para analisar as imagens segmentadas de vitrinite e 

determinar a classificação do carvão, associando os valores cinzentos à 

reflectância. Para a segmentação de maceral, foram utilizadas cinco amostras para 

treinar a rede, 174 imagens foram utilizadas para treino, e 86 foram utilizadas para 

validação, com os melhores resultados obtidos para os modelos de vitrinite, 

inertinita, liptinita e colotelinita (89,23%, 68,81%, 37,00% e 84,77% F1-score, 

respectivamente). Essas amostras foram utilizadas juntamente com outras oito 

amostras para determinar os resultados de classificação utilizando a reflectância 

de collotelinite. As amostras variaram entre 0,97% e 1,8% de reflectância. Este 

método deverá ajudar a poupar tempo e mão-de-obra para análise, se 

implementado num modelo de produção. O desvio médio quadrático entre o 

método proposto e os valores de reflectância de referência foi de 0,0978. 

Palavras-Chave 

Processamento Digital de Imagens; Refletância de Vitrinita; Redes Neurais 

Convolucionais; Petrografia de Carvão; Análise de Macerais. 
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1 
Introduction 

Coal is still used as a raw material for many manufacturing processes, 

especially in the steel industry, such as pig iron production, ferroalloy production, 

and cement manufacturing. The macerals, the individual constituents of organic 

matter, influence the quality of the coals; they can be recognized by microscopic 

analysis. Thus, the microstructural characterization of coal by optical microscopy 

is a fundamental tool, allowing the identification of the macerals by reflectance, 

color, morphology, anisotropy, size, and relief or polishing hardness. The most 

important parameters in coal analysis are its rank and maceral composition. The 

macerals originate from different plant tissues after many physico-chemical 

changes due to heat and pressure during the coalification process. Coalification 

refers to the process of the peat turning into coal as it changes its chemical 

composition and increases its carbon content. Rank is a measurement of how 

advanced the coal is in the coalification process, one of the most common ways to 

evaluate it is by measuring the reflectance of the vitrinite macerals group, which 

increases in a well-behaved manner during coalification (ICCP 1998, 2001; 

SUAREZ-RUIZ & CRELLING, 2008; TAYLOR et al., 1998). 

The analysis of these macerals is traditionally performed by a trained coal 

petrographer, who inspects the polished surface of a specimen under an optical 

microscope (TAYLOR ET AL., 1998). A percentage of each maceral is estimated 

based on counting a statistical number of points, sweeping the entire sample 

surface. The procedures for maceral analysis follow the recommendations of the 

ASTM D2799-11 (2011), ISO 7404-3 (2009), or AS 2856.2 (1998). It is important 

to note that, while coal petrology refers to the study of coal, coal petrography is 

limited to the techniques of evaluation of coal rank and type. 

The most significant limitations of the manual approach are the dependency 

on the subjectivity and level of training of different petrographers, errors due to 

human fatigue, and, most importantly, the fact that it is a relatively lengthy 

process. The reason why it is done manually lies in the fact that maceral 

classification is an extraordinarily complex task, as coal itself is a complex 

material. Macerals are identified by their size, shape, color, reflectivity, texture, 

fungal presence, degradation, degree of gelification, fluorescence, and relative 

position to other macerals (TAYLOR et al., 1998). No clear set of easily 

extractable parameters can be used to define a maceral, rendering traditional 

image analysis and machine learning ineffective.  

This motivates the use of deep learning methods, which have proven to be 

highly efficient for classifying and recognizing patterns. Unlike traditional neural 

networks, where it is necessary to extract the relevant attributes previously, 
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convolutional neural networks (CNNs) (BOUVRIE, J., 2006) can learn to extract 

the relevant characteristics of the image and make a decision as to the 

classification at the same time. 

The three major maceral groups, vitrinite, inertinite, and liptinite, are 

derived from relatively well-preserved lignin-rich tissues, degraded or oxidized 

tissues, and lipid-rich plant matter, respectively (ICCP 1998, 2001; PICKEL et al., 

2017). These main groups have different optical properties as well as different 

morphologies, texture and degrees of gelification. Out of all the optical properties, 

however, the most important one for maceral classification at group level is their 

reflectance in the reflected light microscope. Liptinite displays a dark grey to 

brown color, vitrinite displays an intermediate grey color, and inertinite shows a 

light grey to white color. However, as the rank increases, the maceral groups 

experience an increase in reflectance (SMITH & COOK, 1980), making it 

difficult to distinguish between them as they converge. The most consistent 

changes occur within the vitrinite group macerals throughout coalification. The 

reflectance of vitrinite, particularly that of the smooth maceral collotelinite 

derived commonly from woody cell walls (ICCP 1993, 1998), is typically used as 

a measure of the sample’s rank.  

The current work aimed to develop an automatic maceral segmentation 

system that eventually settled for maceral group-level segmentation and a method 

to determine coal rank reflectance based on the collotelinite segmentation results. 

A dataset containing 260 images with coals ranging from 0.97% to 1.2% 

reflectance was built with over 17000 annotations being hand-made. The 

annotations were made at maceral group, maceral subgroup and individual 

maceral level; different models were trained considering different maceral 

groupings and their uses and limitations were discussed. 
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2 
Problem Description and Objectives 

Coal is widely used material industrially, its applications ranging from iron 

production to the electricity and heat generation. Coal’s usage is heavily dictated 

by its properties, of importance to this work being its maceral composition and 

rank. Maceral is to coal what mineral is to rock, that is, the individual chemical 

components that compose coal. The three main groups of macerals ae: vitrinite, 

inertinite and liptinite. Coal rank is a measurement of its maturation stage in the 

coalification process. There are many ways to evaluate coal rank, this work 

concerned itself with rank evaluation by means of vitrinite reflectance 

measurement. 

The main objectives of this thesis can then be summarized as: developing a 

convolutional neural network (CNN) system capable of automatically identifying, 

classifying, and segmenting macerals in reflected light optical microscopy 

(RLOM) coal images at maceral group level and possibly individual maceral.  

Specific Objectives: 

- Build up an extensive databank consisting of as many images as possible 

of each industrially relevant maceral class. 

- Develop a reproducible method of capturing RLOM images from the 

macerals. 

- Annotate extensively and classify the maceral groups present in these 

images. 

- Train the neural network and optimize architecture and parameters for 

maceral segmentation. 

- Select the most appropriate segmentation model for rank  reflectance 

recognition. 

- Select the most appropriate segmentation models for maceral composition 

determination 

- Develop a methodology to determine rank reflectance using the segmented 

images from the model above. 
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3 
Bibliographic review 

3.1 What is coal? 

Coal is a sedimentary rock that, unlike the majority of other rocks, is 

composed mostly of organic matter derived from plant debris that accumulated in 

peat mires during different geological periods (TAYLOR et al., 1998). As a result, 

coal is chemically composed of carbon and hydrogen, sulfur, oxygen, and 

nitrogen compounds (HAENEL, 1992). The plant debris underwent 

decomposition in the peat phase, followed by low-grade metamorphism from 

increasing temperature and pressure in the subsurface as layers of waste were 

buried in the subsurface. These layers became the coal seams that are extracted 

today. The different ranks of coal can be grouped into the following classes (ISO 

11760:2018, 2018) (Figure 1 and Figure 2): 

- Lignite (often referred to as brown coal) and sub-bituminous coals are used 

chiefly for fuel and electricity generation. 

- Bituminous coal (often referred to as black coal), which is the most 

abundant type of coal and is also used for electricity generation, but more 

importantly for coking and steel making (being, therefore, the focus of this work) 

- Anthracite is used mainly for residential and commercial space heating.  

The utility of the coal is dictated by its properties which are commonly 

referred to as its rank, type, and grade. This work concerns itself with only the 

first two, which will be presented below. 
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Figure 1 - Increase in vitrinite reflectance with increasing rank from peat to 

anthracite. From https://geology.com/rocks/coal.shtml. 

 

 

Figure 2 - A-Peat, B-Lignite, C-Sub-bituminous coal, D-Bituminous coal, E-

Anthracite. Note that the pencil in D also shows the different bands of vitreous and dull 

coal, most evident in bituminous rank coals. From https://geology.com/rocks/coal.shtml. 

 

3.2 The coalification processes and coal rank 

The plant material undergoes geological processes which convert it into 

coal, and these processes are called peatification and coalification. During the peat 

phase, biochemical decay processes occur, led by fungi and aerobic bacteria 

(TEICHMULLER & TEICHMULLER, 1979). During coalification, a series of 

physical and chemical transformations emerge promoted by compaction, pressure, 

and heat with prolonged burial at depths of up to several kilometers and over 

several hundred million years (TEICHMULLER & TEICHMULLER, 1979). The 

https://geology.com/rocks/coal.shtml
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coalification process can be evaluated as the coal rank, measured by the decrease 

in the volatile matter, hydrogen, oxygen, and moisture, and a consequent increase 

in the carbon content. Accordingly, porosity decreases, and the amount of light 

that reflects off the coal surface, or reflectance, increases. These transformations 

can be seen macroscopically in hand specimens (the coals change from brown to 

black and show an increase in sheen) and under the optical microscope, where the 

plant material referred to as macerals or recognizable macerated plant fragments, 

will have different reflectivity.  

The vitrinite maceral group (especially the collotelinite maceral) has the 

most consistent and stable increase during coalification. Because of that, vitrinite 

reflectance is often used as a good measure of the coal rank. 

 

3.3 Peat accumulation processes leading to coal type 

The coal deposits originated in different geological periods, notably in the 

late Carboniferous and Permian periods, from which most coking quality coals 

derive. For peat (the precursor of coal) to be formed, two conditions had to be 

met. There should be enough organic matter deposited as the plants die, and some 

of this matter would have to remain preserved throughout the peatification and 

coalification processes. As partial preservation is achieved by means of burial, the 

burial rate under later deposits must exceed the decomposition rate of organic 

matter decomposition. The ideal conditions for peatification are a slowly 

subsiding area or basin, anoxic conditions to slow decay, minimal flooding by 

sediment-laden water, and humid conditions. These are found in wetlands, and 

peat will accumulate as long as the groundwater table maintains a stable 

relationship with the peat deposits, that is, not rising fast enough to flood the 

deposits and not receding too quickly to expose organic matter and already 

formed peat to erosion and decomposition (TAYLOR et al., 1998). For the peat to 

become coal, it is eventually buried underneath layers of sediment that amass as 

the geological basin subsides.  

The plants growing in wetlands today and accumulating peat vary from trees 

with dense wood and bark in their boughs, trunks, and root systems to smaller 

shrubs and non-woody plants such as ferns and mosses, among others. Plant 

tissues have different chemical compositions with varying pathways of 

decomposition that lead to different coal types. Two critical processes occur 

during peatification. The first one is the decomposition of hydrolyzable and 

nitrogen-rich substances of plants, such as cellulose, hemicellulose, starch, and 

proteins (giving off liquids and gases like water, methane, carbon dioxide, and 

ammonia). The more resistant substances like lignins and tannins become thus 

more concentrated. The second and most important process is humification, where 

substances like cellulose, and mainly lignin, are transformed into humic 

substances (TAYLOR et al., 1998). Humic substances are complex structures 

containing carbon, oxygen, hydrogen, and nitrogen; they have an aromatic nucleus 

and hydroxyl (-OH) and carboxyl (COOH) functional groups. These humic 
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substances remain and undergo coalification to originate the huminite (brown coal 

rank) and vitrinite (black coal rank) group macerals. Plant tissues that are rich in 

long chain aliphatics such as suberin-rich bark, leaf cuticles, resins, and spores, or 

those which were burnt to charcoal or oxidized enzymatically by fungus are the 

constituents of the peat that do not undergo humification and have their chemical 

composition mostly untouched during this process (TAYLOR et al., 1998). These 

form the maceral groups, liptinite, and inertinite.  

In hand specimens of coal, the proportion of the different plant tissues 

preserved in the peat phase is recognizable as stratified layers or bands. The 

preserved wood and bark bands are observable as such in lower rank lignites, but 

with the increased compaction and loss of moisture and porosity in higher rank 

black coals, they appear shiny or vitreous (like glass) and hence were called 

vitrain bands by Marie Stopes (STOPES, 1935). The more decomposed or 

macerated and gelified plant detritus is compacted, but its micro-granular texture 

is slightly more porous and appears duller. It is also mechanically tougher or 

harder than the vitrain bands and was called durain. Charcoal in coal has a fibrous 

luster and is called fusain. Different proportions of the end member vitrain and 

durain bands are used to characterize coals layers into different lithotypes. Thus, 

coal seams are composed of different lithotypes that often show a vertical 

stratigraphic pattern or profile reflecting the succession of other plants responding 

to the rising (or falling) water tables in the peat phase. These different megascopic 

lithotypes directly relate to the microscopic maceral composition, which is 

presented later. 

 

3.4 Maceral definition and criteria for recognition 

This works focuses on the approach proposed by Marie Stopes – the Stopes-

Heerlen system (SH) – which views coal as a rock (STOPES, 1935), but more 

specifically on the ICCP classification. Stopes proposed the term maceral from the 

Latin macerare, which means to soften, to describe the individual organic 

components of coal. This would then be to coal analogous to the term mineral to 

other rocks. Stopes proposed the classification of these macerals into three main 

groups: vitrinite, inertinite, and liptinite (previously exinite). Although the Stopes 

system is still maintained, the individual maceral classification system has been 

modified over the years, resulting in a group, sub-group, and individual maceral 

subdivision. The maceral names, classification, sub-group names and their overall 

grouping can vary depending on which of the many standards is being considered. 

Table 1 shows the maceral classification used in this work; it was inspired by both 

the International Committee for Coal and Organic Petrology (ICCP) standards and 

the Australian standard (AS) for maceral classification (AS, 1986; ICCP, 1998, 

2001; PICKEL et al., 2017; SYKOROVA et al., 2005). 

The ICCP subdivision can be understood as follows: 

-Maceral group is defined by reflectance. 
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-Maceral subgroup is defined by the degree of destruction. 

-Individual maceral is defined by morphology and degree of gelification.  

Table 1- ICCP classification of coal macerals. 

Maceral Group Maceral Subgroup Maceral 

Vitrinite 

Telovitrinite 
Collotelinite 

Telinite 

Detrovitrinite 
Collodetrinite 

Vitrodetrinite 

Gelovitrinite 
Corpogelinite 

Gelinite 

Inertinite 

Teloinertinite 

Fusinite 

Semifusinite 

Funginite 

Geloinertinite 

Macrinite 

Secretinite 

Micrinite 

Detroinertinite Inertodetrinite 

Liptinite X 

Sporinite 

Cutinite 

Resinite 

Alginite 

Liptodetrinite 

 

3.4.1 The Vitrinite Group 

The vitrinite group receives its name from vitrum, Latin for glass 

(STOPES, 1935). Generally, it is the most abundant of the groups being the 

leading maceral coal group; it is defined by having an intermediary reflectance 

between the other two groups over the rank range where they can still be 

distinguished.  

Vitrinite reflectance ranges from 0.5% in low-rank coals to over 4% in high-

rank coals, going from a dark grey tone to a very light grey or even white. 

Liptinite reflectance surpasses that of vitrinite in upper medium rank (around 

1.5% max reflectance) coals, and both overtake inertinite in high-rank coals. 
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Vitrinite is soft and usually does not show any relief related to other macerals. 

Vitrinite has considerably higher oxygen content than the other groups, its 

chemical composition, more specifically its elemental composition, varies during 

coalification. Its carbon content increases, whereas its oxygen content decreases 

steadily alongside hydrogen content. Vitrinite is a significant source of natural 

gas, and, in medium-rank coals, it fuses during carbonization, influencing 

hydrogenation and combustion (ICCP, 1998). 

Vitrinite can be subdivided into three subgroups: telovitrinite (tela from 

Latin meaning tissue), gelovitrinite (gelu from Latin meaning frost), and 

detrovitrinite (detritus from Latin meaning abrasion) (ICCP, 1998). 

The Telovitrinite Subgroup is the first and technologically the most 

important of the vitrinite subgroups. It is meant to include all vitrinite that 

preserves its cellular structure regardless of whether it can still be seen under 

reflected light. This subgroup originates from tissues such as bark, roots, stems, 

and leaves, which are lignin- and cellulose-rich. It is comprised of two main 

macerals: collotelinite and tellinite. 

Collotelinite is the most abundant of the individual macerals (Figure 3). It is 

characterized mainly by its homogeneity, having no visible cell structure. Its 

reflectance is the primary rank parameter used for coal and is usually higher than 

the reflectance of collodetrinite. Collotelinite goes from a dark gray in lower ranks 

to bright gray or even white at higher ranks (Figure 1). It’s composed elementally 

mainly of carbon and becomes more “closed” and aromatized during coalification 

which is the cause for its observed reflectance increase (ICCP, 1998). 

It is a reactive maceral important to many technological applications, 

including carbonization and liquefaction for fuel production. The collotelinite’s 

grey value is usually chosen to represent the rank of the sample due to its 

consistent increase during the coalification process. 

 

Figure 3 - Collotelinite maceral from the telovitrinite subgroup and vitrinite group 

(1.20% RR). 
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Telinite is an individual maceral characterized by having its cellular 

structure visible (Figure 4). Despite variations in size and shape, it preserves the 

appearance of a cell lumen, usually filled by other macerals such as corpogelinite 

and resinite, sometimes even mineral matter (ICCP, 1998). 

 

Figure 4 - Telinite maceral from the telovitrinite subgroup and vitrinite group with a 

corpogelinite filling. (1.20% RR). 

 

Telinite can only be identified when it has different reflectance from its 

filling inclusions. Most of these inclusions are brighter, but resinite is usually 

darker than the tellinite cell walls. It is less abundant than collotelinite, and, due to 

the reflectance convergence of vitrinite macerals, at high ranks, it can be 

indistinguishable from collotelinite if it has a vitrinitic filling (ICCP, 1998). 

The Detrovitrinite subgroup is characterized by vitrinized plant remains; it 

has the same origin as the telovitrinite subgroup but undergoes further 

chemical/physical degradation. It is subdivided into two macerals, namely: 

vitrodetrinite and detrovitrinite (ICCP, 1998). 

Vitrodetrinite is an individual maceral composed of small vitrinitic 

fragments smaller than 10 µm in the maximum direction. Vitrodetrinite originates 

from extensive comminution from parenchymatous and woody tissues of roots, 

stems, and leaves composed of cellulose and lignin. its gelification process can 

occur either before transportation and deposition, or after sedimentation. It is also 

considered a rare occurring maceral in coal unless the sample surface is etched 

beforehand to reveal it (ICCP, 1998). Only three small instances of vitrodetrinite 

were found in this work.  

Collodetrinite differs from collotelinite by being usually slightly darker, but 

more importantly, by playing the role of a matrix that contains and binds together 

pieces and fragments of other macerals and possibly mineral matter (Figure 5). 

Unlike vitrodetrinite, the vitrinite here appears as a matrix, not being possible to 

identify individual vitrinite particles. It has a similar formation to the collotelinite, 

differing only because of the foreign particles trapped in the vitrinite before the 

gelification process (ICCP, 1998). 
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Alongside collotelinite, it is one of the most abundant macerals found in 

coal, sometimes even more common than collotelinite itself; due to its high 

amount of volatile matter, it degasses considerably during carbonization, making 

it a significant factor in the coal’s caking and coking properties. Collodetrinite 

usually displays a slightly lower reflectance (0.05-.0.10%) than collotelinite. This 

difference, however, tends to disappear as the rank increases (ICCP, 1998). 

 

Figure 5 - Collodetrinite maceral from the detrovitrinite subgroup and vitrinite group. 

 

The Gelovitrinite subgroup is a vitrinite maceral subgroup comprising 

macerals of many possible origins. Still, it is mainly assumed to be formed from 

decayed plant tissues that precipitated as gels within cavities in other available 

macerals, hence the name gelo. Its main macerals are corpogelinite and gelinite 

(ICCP, 1998). 

Corpogelinite receives its name from “body” (corpus meaning body, in 

Latin) and has the appearance of small structureless bodies usually found as 

infillings in cavities from other macerals (Figure 6). They can be spherical but 

elongated and more oval with a variable size. It is usually slightly brighter than 

other vitrinites of the same rank, contrasting with the typically collotelinitic walls 

surrounding it (ICCP, 1998). 
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Figure 6 - Corpogelinite maceral from the gelovitrinite subgroup and vitrinite group. 

 

Gelinite is a maceral consisting of colloidal gels filled in cracks and voids in 

other macerals. It is structureless and homogeneous and does not have the body-

like shape presented by corpogelinite. Like corpogelinite, it has a higher 

reflectance than other vitrinites. It is the most uncommon vitrinite maceral, more 

likely found in coals exhibiting high degradation (ICCP, 1998). Only two possible 

instances of gelinite were found in this work 

 

3.4.2 The Inertinite Group 

The inertinite group receives its name from inertia, Latin for inactivity, for 

they are considered more inert (non-reactive) than the vitrinite macerals in most 

technological processes involving coal. They are defined by having higher 

reflectance than vitrinite for medium to low-rank coals (<5%Rmax of vitrinite). 

Its color varies from light grey to white and even yellowish white at high ranks.  

Inertinite macerals can vary broadly in shape, reflectance, and texture; some 

lower reflectance inertinites with less defined structure can be almost 

indistinguishable from vitrinites. This is especially true between collotelinite, 

collodetrinite and semifusinite, which can be exacerbated when both are present in 

the same particle and display a smooth transition. 

Inertinites have high carbon and low hydrogen and oxygen content, having 

the least pronounced reflectance increase over the coalification process. Inertinite 

may derive from tissues (from plants or fungi), detrital fragments, gelified 

amorphous material, and cell secretions. It may preserve highly intricate cell walls 

as in some fusinites or exhibit almost completely amorphous structure as some 

semifusinites (ICCP, 2001). The inertinite group can be subdivided into subgroups 

according to the presence of cell structure (with telo-inertinite presenting it and 

gelo-inertinite not) and whether they are classified as detritus (in that case being 

detro-inertinites) (AS, 1986). 

Fusinite (fusus meaning spine in Latin) is a structured teloinertinite 

subgroup maceral characterized by its easily recognizable, well-preserved cell 
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structure (Figure 7). Fusinite has a very high carbon content that increases even 

further with rank.  

Fusinite is highly brittle and, when finely dispersed, can improve coke 

strength; it cannot be used for caking capacity and acts as an inert aggregate 

material in coal blends. Due to its high carbon content, fusinite is mostly inert and 

does not fuse during combustion. 

 

 

Figure 7 - Fusinite maceral from the teloinertinite subgroup and inertinite group. 

 

Semifusinite is a teloinertinite subgroup maceral defined by displaying 

intermediary reflectance and structure compared to collotelinite and fusinite 

(Figure 8). The maceral can be slight to highly amorphous, with its cell walls 

barely recognizable and cavities filled with other macerals or minerals. Its 

reflectance can range from just above that of collotelinite of the same rank to just 

below that of fusinite. On the extreme ends of this range, it can be hardly 

distinguishable from the other two macerals and, like both, is a ubiquitous coal 

component worldwide (ICCP, 2001). 

Semifusinite is partially reactive during conversion processes, with a portion 

behaving as fusinite and a portion like collotelinite. This property makes it strictly 

necessary for a good classification system to correctly identify, quantify and 

distinguish it from the collotelinite and fusinite. Its potential similarity to those 

two macerals represents one of the biggest obstacles identified here to proper 

maceral classification (ICCP, 2001). 

 

Figure 8 - Semifusinite maceral from the teloinertinite subgroup and inertinite 

group. 
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Funginite is a teloinertinite subgroup maceral defined by being derived from 

fungal tissue such as fungal spores, sclerotia, mycelia, and other fungal tissue 

(Figure 9). Like other inertinites, it has a reflectance slightly above that of vitrinite 

over the range they can be distinguished. Unlike fusinite, however, its reflectance 

becomes indistinguishable from that of vitrinite relatively early, at around 

1.6%Rmax; however, it still retains a very distinct structure. Due to the small 

quantities of this maceral in coal, there is no definitive conclusion about its 

influence on the coal properties (ICCP, 2001). 

 

Figure 9 - Funginite maceral from the teloinertinite subgroup and inertinite group. 

 

Secretinite is a geloinertinite subgroup maceral that has a possible origin 

in the secretory ducts of seed ferns (Figure 10). Its origins and chemical 

composition are, however, not clearly defined. Its appearance is that of small 

round to oval bodies possessing one or more slits on its surface, its most striking 

feature. Secretinite may have reflectance slightly above that of vitrinite up to even 

above that of fusinite. It is distinguishable from macrinite due to its slits and relief 

(ICCP, 2001). 

Like fusinite, secretinite doesn’t fuse during coking and, when finely 

dispersed, enhances coke strength. 

 

Figure 10 - Secretinite maceral from the geloinertinite subgroup and inertinite 

group. 
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 Macrinite is a geloinertinite subgroup maceral that comprises macerals of 

varying shapes and reflectance. Macrinite can look spherical/oval but also like an 

amorphous matrix (Figure 11). When it has small oval shapes, it can be 

distinguished from secretinite by the absence of slits and by its smoother edges. 

When it resembles a more extensive particle, it can be distinguished from 

semifusinite by an even more pronounced lack of structure and smooth surface 

and from vitrinite due to its higher reflectance. 

 

 

Figure 11 - Macrinite maceral from the geloinertinite subgroup and 

inertinite group. 

 

Its technological importance is related to its reflectance; the lower the 

reflectance, the more reactive like the vitrinite it is; the higher the reflectance, the 

less reactive it is (ICCP, 2001). 

Micrinite is a geloinertinite subgroup maceral characterized by small 

inertinitic fragments with an upper size limit of 2 µm. Micrinite can be grey to 

white and becomes indistinguishable from vitrinite at around 1.4%Rmax. Due to its 

small size, it can be challenging to identify with a 20x objective lens (OL), 

making it challenging to train an automated system. It is believed to be reactive, 

but its importance to technological processes hasn’t been fully assessed due to its 

small size and proportion. Because this work captured images with a 20X OL, the 

magnification was insufficient to identify micrinite correctly; no micrinites images 

were captured. 

 Inertodetrinite is a detro-inertinite subgroup maceral that consists of 

inertinitic fragments between 2 and 10 µm. Due to being composed of pieces from 

other macerals, its properties vary widely depending on its origin (Figure 12). 
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Figure 12 - Inertodetrinite maceral from the detro-inertinite subgroup and inertinite 

group 

 

3.4.3 The Liptinite Group 

Liptinite is a maceral group characterized by its high hydrogen content and 

lower reflectance than vitrinite in the range where they can be distinguished (until 

around 1.3%Rrvitr). Previously called exinites, they stem from non-humifiable 

plant matter such as cuticles, resins, spores, and fats. Liptinites yield the highest 

amount of by-products during coking, also a vital petroleum source. Liptinites 

rarely exist as particles in the resin and are usually found embedded in other 

macerals, mainly vitrinite (PICKEL, W. et al., 2017). 

Liptinites are not classified in subgroups but directly in the individual 

macerals: sporinite, cutinite, resinite, suberinite, exsudatinite, chlorophyllinite, 

alginite, liptodetrinite, and bituminite. This work focuses on the most relevant 

(due to being the most frequent) liptinites in the 0.7%< Rrvitr <1.4%, sporinite, and 

cutinite. 

Sporinites originate from spores and pollen; they have a greyish dark brown 

color and may look like small thin lines, with the format of its original spore still 

visible. However, some might stem from mega spores, making them harder to 

distinguish from mineral matter without fluorescence (PICKEL, W. et al., 2017 ) 

(Figure 13). 

 

Figure 13 - Sporinite maceral from the liptinite group. 
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Cutinites originate from cuticles and stems; they appear as long thin lines 

and can be very similar to sporinites. Cutinites, however, are slightly lighter than 

sporinites of the same rank and have a serrated aspect to their appearance (Figure 

14). 

 

Figure 14 - Cutinite maceral from the liptinite group 

 

3.5 Changes in maceral reflectance with increasing coalification or 
rank 

As stated previously, coal changes physically and chemically during rank 

evolution, measured by bulk assay and optically. The gross calorific value 

(MJ/kg) can distinguish low-rank coals like lignites and high volatile bituminous 

coals. Volatile matter loss (weight loss when heating to 900°C) works well for 

higher rank anthracite coals and lower rank bituminous coals. The carbon content 

(dry and ash free) can be used for lower rank coal lignites to medium volatile 

bituminous coal. Hydrogen content is one of the best parameters for high-rank 

anthracites. Measuring the atomic O/H ratio is also possible when working with 

low-rank coals (TAYLOR et al., 1998).  

The most widely used parameter nowadays, however, is the reflectance of 

the vitrinite maceral group (collotelinite specifically (ICCP, 1998), if possible). 

All maceral groups experience a reflectance increase during coalification (Figure 

15), but vitrinite group macerals, particularly collotelinite, have the most stable 

increase. That, coupled with the fact that it is the most abundant and common 

maceral in coking coals, makes it one of the most used parameters industrially and 

academically for coal analysis. Figure 15 shows a comparison between reflectance 

and the other parameters as the rank evolves, illustrating how the vitrinite 

reflectance has the simplest, most stable, and reliable increase throughout ranks 

(ASTM D2798, 2011) (ASTM D2799, 2011) (TAYLOR et al., 1998). 
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Figure 15- Relative progression of liptinite and inertinite reflectance compared to 

the progress of vitrinite reflectance as the coal rank increases (SMITH & COOK, 1980). 

 

Being the only of the aforementioned parameters that can be easily extracted 

from an optical microscopy image makes reflectance (especifically random 

reflectance) the most important parameter for this thesis work, as the network can 

use it to help distinguish between maceral groups. However, due to the structural 

and morphological difference between macerals in the same groups, reflectance 

could never be used as the sole parameter to distinguish  individual macerals 

(SMITH & COOK,1980) (TAYLOR et al., 1998). As the microscope captures 

light from the sample surface, the grey tone of objects in the image is directly 

related to their ability to reflect light, that is, their reflectance. By using a standard 

of well-known reflectance for calibration it is possible to measure the reflectance 

of any of the images’ pixels afterwards. And as long as the lighting conditions are 

preserved between samples, their grey tones will always be comparable, which is 

essential for the network's training (Section 4.3). 

 

3.6 Traditional Characterization 

3.6.1 Maceral Analysis 

In order to achieve large scale reproducibility and precision in both 

industrial and academic settings, many international standards were established 

for coal sample preparation (ASTM D 2797/D2797M, 2020; ISO 7404-2, 2009; 

AS 2856.1, 2000), maceral composition analysis (ASTM D 2799-05, 2021; ISO 

7404-3, 2009; AS 2856.2, 1998) and coal rank reflectance determination (ASTM 

D 2798, 2021; ISO 7404-5, 2009; AS 2856.3, 2000). Coal samples have been 

prepared as polished particulate blocks as they are easier to prepare than thin 

sections (STOPES, 1935; TAYLOR et al., 1998). Microscope systems have also 
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been changing. Recently, automated and digital systems equipped with high-

resolution cameras are referred to in the literature as the traditional photometer 

systems (e.g., BARBOLINI et al., 2019; PETERSEN et al., 2013; SANEI & 

ARDAKANI, 2016, among many others). These new systems are also included in 

the abovementioned standards, particularly for measuring reflectance.  

Coal petrographers developed a widely used method for determining coal 

compositions in terms of its macerals, called point counting. Coal samples are first 

homogenized by passing through a 1 mm sieve and are embedded in a resin, 

which allows the samples to be used for both maceral and vitrinite reflectance 

analyses. For maceral composition determination, the samples are examined under 

a reflected light microscope with a mechanical stage capable of moving in 

increments or steps big enough so that negligibly few particles receive more than 

one count. The procedure should also be performed with an immersion objective 

of magnification between 25x and 60x with an eye piece of magnification 

between 8x and 12x. On each step, the point directly below the intersection of the 

cross-hairs must be analyzed, and if the point belongs to a maceral group, the 

counter increases for said group. If the point belongs to the resin or a hole/pore 

inside a maceral, it is skipped. The operator decides whether to include the 

mineral matter in the analysis; if that isn’t the case, any point belonging to the 

mineral matter is also ignored. The procedure continues until at least 500 points 

have been collected (Figure 16) (ASTM-D2799, 2011; ISO 7404-3, 2009; 

SUAREZ-RUIZ & CRELLING, 2008).  

 
Figure 16 - Example of a typical point counting procedure. 

 

The point percentage of the groups is understood to represent the volume 

fraction of the maceral groups in a sample, which means: 

VV+VI+VL=100                                                                                         (1) 

where VV is the volume fraction of vitrinite, VI is inertinite, and VL is the volume 

fraction of liptinite. The same procedure can be applied while classifying the 
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points in their maceral-subgroups or individual macerals. In the last case, the 

volume fractions represent the individual macerals, and the equation (1) will be 

adapted accordingly. 

 

3.6.2 Collotelinite Reflectance Analysis 

Coal rank by vitrinite reflectance petrographic analysis will be covered 

here according to the ASTM-D2798 standard. As described in the previous 

section, a microscope can also be used for rank reflectance determination; 

however, the mechanical stage must allow for a manual 360º rotation if maximum 

mean reflectance measurements are desired. 

At least two standard mirrors, whose well-known reflectances cover the 

range of vitrinite reflectance expected to be measured, are used for the lighting 

calibration. The relation between the grey level measured and the reflectance is 

presumed to be linear in that range after calibration unless a different mode of 

capture is used. 

There are two possible measurements for vitrinite reflectance: maximum 

mean reflectance and random mean reflectance. After calibration, the sample is 

placed on the stage for analysis to perform the measurements. The sample is 

covered in steps similar to maceral analysis. For each section where a 

measurement will be made, the location to be measured must be scratch free, 

away from borders, transitions to other macerals and very reflective areas (such as 

pyrite) and of uniform appearance. The reflectance value of the chosen point is 

collected in the case of random mean reflectance; for maximum mean reflectance, 

the circular stage is rotated and the maximum reflectance value observed is 

collected. The entire procedure is repeated until at least 100 measurements have 

been collected. For blends of different coal ranks, it is advised to collect at least 

150 points. 

It is essential to state that random reflectance measurements are the more 

relevant ones to this work. The methodology proposed in this work does not 

include rotating the sample during capture, which makes the results not directly 

comparable to maximum reflectance measurements. 

Once the points are collected, a distribution can be plotted in both cases, 

resulting in mean, mode, and standard deviation values. The value reported as the 

reflectance corresponds to the mean value from these distributions. The histogram 

bins can be reported as V bins, which can be read following the example: V4 class 

meaning 0.4%, V12 meaning 1.2%. Figure 17 shows a typical histogram from 

rank reflectance analysis of a sample with 1.12% random mean vitrinite 

reflectance and 0.08 standard deviation. 
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Figure 17 - Example of a typical reflectance histogram from the traditional method. 

Classes can be read following the example: V4 class meaning 0.4%, V12 meaning 1.2%.  

 

The reproducibility of this method is defined by the maximum difference 

expected from two measurements made on the same sample by different operators 

in different labs and equipment on different days. The reproducibility reported in 

the standard is 0.06% reflectance. More details on this method can be found in the 

standard ASTM D2798. 

 

3.7 Deep Leaning and Convolutional Neural Networks (CNNs) 

Machine learning can be described as using algorithms to analyze data, learn 

from it, and determine or predict something related. Instead of manually coding 

software routines with specific instructions to perform a particular task, the 

algorithm can learn from the data how to solve a task without being explicitly 

programmed. It is considered a subset of artificial intelligence studies.  

Deep learning, in turn, is a subset of machine learning (Figure 18), in which 

the algorithms are created at many levels, each level providing a different 

interpretation of the transmitted data and having a further depth of abstraction. 

These interconnected algorithms form an artificial neural network resembling the 

human brain's neural connections. Deeps learning’s most crucial characteristic is 

feature learning, that is, the ability to learn which features are essential for pattern 

recognition; traditional machine learning relies on an operator to determine which 

features are crucial and devise a way to extract them and feed them to the 

network. However, unlike a biological brain, in which any neuron can connect to 

any other neuron at a certain physical distance, these artificial neural networks 

have different layers, connections, and directions of data propagation. This 
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characteristic is responsible for deep learning methods’ consistent and rapid rise in 

use for image identification and classification worldwide.  

 

Figure 18 - Artificial intelligence, machine learning, and deep learning (CLAIRE, 

2019). 

 

The central nervous system inspires the idea for an artificial neural network, 

which is composed of mathematical functions responsible for extracting or 

analyzing features fed to it. These mathematical functions are called artificial 

neurons (Figure 19). These neurons are, therefore, the basic units in an artificial 

neural network.  

Neurons located at the beginning of the neural network receive input 

directly from the analyzed data, whereas every other neuron receives input from 

previous layer neurons. Each input received is multiplied by a particular value, 

called weight (w), which establishes the connection between any two neurons. 

Each neuron sums each multiplied input it receives and applies an activation 

function, resulting in an output fed to one or more of the subsequent layer 

neurons. When properly trained, that means having appropriate weights, the 

output given by the last layer neurons can be used to solve the problem it was 

trained for (IGLESIAS et al., 2019). This can be seen in the following equation:  

∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑛
𝑖=0                                                                                             (2) 

where xi would be the input received from the previous neuron, wi would be the 

weights, and b, the bias. (IGLESIAS et al., 2019) 
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Figure 19 - Biological model of a neuron and its mathematical equivalent. w is the 

weight connecting the neuron to one of the previous neurons, x is the input received from 

the last neuron, and f is the activation function that results in the output of the neuron. 

 

This work’s network training approach is called supervised training. For this 

approach, it is initially necessary to create a dataset consisting of delineated 

objects with their respective classes properly labeled by a specialist. These 

annotations are traditionally called ground truth; these images are split between 

training and test sets. The first is used to train and update the network weights, 

while the second is used merely to validate and assess the model’s performance on 

images that have not been used to train the network. Hence the term supervised. 

Most deep learning architectures for image analysis problems involve 

multiple convolutional layers called convolutional neural networks (CNNs). This 

architecture can receive images as input and doesn’t require pre-processing to 

extract features. In this case, xi (equation (2)) becomes the pixel values of the 

previous matrix. The convolution operation can be written as: 

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) =∫𝑥(𝑎)𝑤(𝑡 − 𝑎)𝑑𝑎                                                      (3) 

where the function x is referred to as the input, w is the convolution kernel, and 

the output s is sometimes referred to as the feature map (IGLESIAS et al., 2019). 

A visual representation of this operation can be seen in Figure 20, as the kernel 

“slides” across the image while multiplying with their pixel, each step and 

multiplication generates a single pixel value seen in the resulting image to the 

right. 

AxonBodyDendrites
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Figure 20 - Mathematical and matrix representation of the convolution operation 

involving two images. 

 

Each neuron in a CNN has a random values kernel at first associated with it, 

equivalent to the weights from traditional networks, which means that at first they 

extract random features. These kernels sweep the input image resulting in a new 

matrix. As for the standard multi-layer networks, a non-linear activation function 

is applied to the numbers resulting from the sweep. Otherwise, the result of the 

network output would be linearly dependent on the input data, preventing the 

network from solving more complex cases. The typical recommendation 

nowadays is to use the ReLU (Rectified Linear Unit) function (JARRETT et al., 

2009), as it maintains a relatively simple relation (not computationally heavy) 

while removing the linear dependency by making any negative values have a zero 

output (Figure 21). It is defined by the equation (4): 

𝑔 (𝑧) =  𝑚𝑎𝑥 {0, 𝑧}                                                                                                (4) 

 

 

Figure 21- Rectified Linear Unit (ReLU) graphical representation. 

 

The kernels can be understood as feature detectors and the resulting image 

as a feature map, which identifies the areas in the original image containing the 

kernel's feature (areas containing the feature have brighter pixels). In traditional 

digital image analysis, this can be understood as applying a filter to the image to 

highlight a feature, such as a border (Figure 22). 
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Figure 22 - Feature detector used to highlight borders in the original image. 

 

Convolutional layers are usually intertwined with subsampling layers called 

pooling. This pooling aims to reduce the number of parameters, and redundancy 

and add a degree of spatial variance to the process. It also converts all the values 

of a block of size n by n, along its spatial dimensions, into a single pixel with a 

value that can be the minimum (min-pooling), the maximum (max-pooling), or 

the average (average-sharing) of the block values (Figure 23). The output image 

will be n times smaller across both spatial dimensions. Since higher pixel values 

in a feature map indicate the presence of the feature, the most common type of 

pooling is max-pooling. 

 

Figure 23 - Max-pooling operation applied to a matrix and its result. 

 

The disposition of the convolutional and pooling layers depends on the 

architecture used, and they are usually applied multiple times. Each convolutional 

layer can have hundreds of neurons, and coupled with pooling layers, they make 

up the feature extraction portion of a convolutional neural network. 

A generic chart of this conventional CNN can be seen in Figure 24. 
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Figure 24 - Generic architecture of a CNN with its feature extraction and 

classification sections. 

 

The extracted features are then fed to the classification portion of the 

network (Fully Connected Network in the case of Figure 24), which varies 

depending on the architecture used. The Mask R-CNN (Regional Convolutional 

Neural Network) section will describe that in more detail. 

However, for a network to make a correct classification, it needs to have the 

appropriate weights in all of its layers to extract the useful features and make the 

correct classification. A supervised training achieves this by having a databank 

with previously classified images to train the network. The network is initialized 

with random weights and is run through the databank. A loss function is used to 

measure the error, in other words, the distance between what the network does and 

what would be the correct answer as a function of the weights in the network. A 

popular loss function is the cross-entropy loss function: 

𝐶𝑟𝑜𝑠𝑠 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  − ∑ 𝑦(𝑥) log(𝑝(𝑥))𝑥                       (5) 

Where y(x) is the binary class label, which results in 1 if the correct class, 0 

otherwise, and p(x) is the probability of each class. 

Employing a minimization technique (like gradient descent) and a back-

propagation algorithm (RUMELHART et al., 1986), the weights of both the 

convolutional and fully connected layers are updated to reduce the error. This 

process is called Backpropagation. The adjustment of errors in the CNN during 

the learning process occurs in both portions of the network: in the feature 

extraction layers (convolution), where filters’ weights are adjusted, so the network 

learns which features are meaningful to the task; and in the classification layer, 

where the weights are changed, so the network learns how to correctly 

segment/classify the image based on the extracted features. 

The gradient descent is performed based on the cost function gradient (
𝜕𝐶

𝜕𝑤𝑖𝑗
). 

The weights (wij) are updated to decrease the loss function output by increasing or 

decreasing accordingly, with a learning rate (α) (KIEFER and WOLFOWITZ, 

1952): 

𝑤𝑖𝑗
𝑛𝑒𝑤 = 𝑤𝑖𝑗

𝑜𝑙𝑑 − 𝛼
𝜕𝐶

𝜕𝑤𝑖𝑗
                                                                                 (6) 
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The learning rate is responsible for the magnitude of the weight update, also 

called step size (𝛼
𝜕𝐶

𝜕𝑤𝑖𝑗
). It is usually adaptative, meaning that it is bigger at the 

beginning of the training and becomes smaller as the training advances. The 

bigger learning rate, in the beginning, allows for a quicker convergence of the 

weight, while the smaller step size allows for a final fine-tuning around the 

minimum value of the Cost function. An example of the process can be seen in 

Figure 25. 

 

Figure 25 - The steepest descent algorithm for minimizing loss is responsible for 

the network’s weight/learning convergence (IGLESIAS et al., 2019). 

 

However, in a real case scenario, the network might get “stuck” in a local 

minimum where the error is still very high. For that reason, the weights are 

randomly initialized, as a new initial weights configuration would allow the 

weights to converge to a new minimum (Figure 26). 

 

Figure 26 - A 2D example of how the weight space can have multiple of local 

minima, which will not provide the lowest possible error.  
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Another problem is updating the weight an appropriate amount of times. If 

the training is stopped too early, the model won’t be complex enough to represent 

the data (underfitting). If the training is stopped too late, the model will be more 

complex than the data suggests, being more likely to fail when dealing with new 

data (overfitting). Figure 27 shows an example of underfitting, or fitting and an 

adequate fitting (KIEFER, and WOLFOWITZ, 1952). 

 

Figure 27 – A mathematical representation of model (red line) attempting to fit a 

dataset (blue dots). A) shows the case for underfitting (model too simple), B) shows the 

case for an adequate fitting, C) shows the case for overfitting (model too complex).  

 

One solution is to split the training set each epoch into a further cross-

validation set and actual training set. By assessing the errors in both sets at the end 

of each epoch, it is possible to know when to stop the training. By stopping the 

training when the cross-validation error starts to increase, the model will have 

been trained an adequate amount of epochs. This method for avoiding under- or 

overfitting is called early stopping (Figure 28) (KIEFER and WOLFOWITZ, 

1952). 

 

Figure 28—Early stopping method. By determining the number of training cycles 

after which the cross-validation error occurs, both underfitting and overfitting are avoided. 

 

The last layer of neurons outputs numbers related to the probability of each 

class. For these numbers to reflect an actual probability, they are normalized with 

a softmax function (7): 

DBD
PUC-Rio - Certificação Digital Nº 1812763/CA



46 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑖 =  
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗
                                                                                 (7) 

where Zi is the output of each of the last layer neurons. 

The role of the softmax function can be seen in Figure 29. 

 

Figure 29 - Example of the softmax converting the network output into a probability 

output. 

 

The error function slowly converges to a minimum each time the network 

runs through the databank (an epoch), and all its weights are updated to minimize 

the loss function. That ensures that the network slowly learns how to extract 

features relevant to the problem, and then use them for the 

classification/segmentation/detection. However, to achieve better results it is 

necessary that the training set is sufficiently large and representative of the actual 

case scenario the network will use later. The test set can then be used to validate 

these results. 

Neural networks, however, are not limited to the classification of images. 

Depending on how the network is built, it can offer different kinds of output; the 

four main image interpretation algorithms (despite it not being limited to these) 

are as follows (Figure 30) (BHARATI and PRAMANIK, 2019): 

• Classification algorithms recognize an image's content and do not 

offer the possibility of locating the detected element, in other words, 

make a single decision for the whole image. However, they are swift 

and efficient. 

• Object detection algorithms are trained to locate objects and identify 

classes simultaneously. The location is approximated by a “bounding 

box,” a rectangle with two coordinates (top left and bottom right), 

significantly simplifying the location process. 
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• Semantic segmentation (CORDTS et al., 2016) algorithms classify 

each image pixel as belonging to a class, thus generating Thematic 

Maps. These mask algorithms present objects drawn in polygons and 

can more accurately detect the presence of the element or not. In 

technical terms, they are a second-class specialization through 

segmentation algorithms. Naturally, as they have more free 

parameters to adjust, they require a more extensive training set and 

significantly greater computational power. 

• Instance segmentation algorithms are trained to locate, classify and 

segment objects. 

 

This work aims to train a network that not only classifies images but 

provides as output the original image with individual objects from different 

classes correctly identified and segmented, also known as instance segmentation. 

Thus, a more sophisticated CNN is needed; the algorithm chosen for this work is 

called Mask R-CNN (HE, et al., 2018), which is a state-of-the-art network 

architecture for instance segmentation. 

 

Figure 30 - Examples of semantic segmentation of pixels from objects, classification, and 

localization of an object in an image, object detection, and instance segmentation. 

 

3.8 Mask R-CNN  

A Mask R-CNN (HE et al., 2018) is a very elaborate, recent architecture of 

neural network that is currently the state-of-art for instance segmentation. Mask 

R-CNN, Faster R-CNN (REN et al., 2018), and Fast R-CNN (GIRSHICK,  2015) 
are all derivatives of the original R-CNN (BHARATI and PRAMANIK,  2019) 

(Region-based Convolutional Neural Network). R-CNN received its name 

because instead of offering an input image directly to a convolution layer for 

feature extraction, it uses a region proposal algorithm that narrows down the 

relevant areas of the input image for convolution. Fast R-CNN implemented 

changes in the training algorithm that improved both speed and accuracy of results 

by jointly learning to classify object proposals and refine their spatial locations. 
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Faster R-CNN improved that even further by fusing the convolutional and region 

proposal stages into a single stage called RPN (Region Proposal Network). All of 

these are dedicated to object detection. Mask R-CNN (Figure 31), in turn, adds a 

mask segmentation branch parallel to the established bounding box and class 

recognition branch from Faster R-CNN. 

 

Figure 31 - Generic architecture of a mask R- CNN, feature extraction, RoI 

proposal, and instance segmentation sections (HE et al., 2018). 

 

Mask R-CNN can be understood as consisting of two different stages. The 

first one scans the image and proposes possible bounding boxes for identified 

objects (Regions of Interest or ROIs), which are then refined and fed to the second 

stage. The second stage analyzes the individual bounding boxes and can choose 

which pixels belong to the object and which ones belong to the background, with 

the idea that a bounding box contains only a single whole object, even when it 

overlaps with a different one (HE et al., 2018). 

These stages can be subdivided into smaller modules discussed in the 

following. 

For the first stage, the first module of the network is called the backbone. It 

consists of a standard convolutional layer, like previously discussed, whose 

objective is to extract features from the input image. The early layers detect low-

level features (edges and corners), and later layers detect higher-level features. A 

traditional convolutional neural network may be chosen to act as backbone. 

The backbone may also receive an additional extension called Feature 

Pyramid Network (FPN) (Figure 32). It is an additional pyramid of CNN, whose 

convolutional layers receive input from each convolutional layer of the backbone. 

This allows the network to access features of all levels, improving its ability to 

deal with objects at different scales. Therefore, instead of the output being a single 

feature map, it is now a set of feature maps for each level of the original 

backbone; the map used is chosen dynamically depending on the object's size 

(LIN et al., 2017). 
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Figure 32 - Feature pyramid network schematic. It is responsible for extracting 

different level features from the initial convolutional layers (LIN et al., 2017; REN et al., 

2018). 

 

This work employs a ResNet 101 (101 convolutional layers) in its 

backbone. A high number of convolutional layers allows for more abstract 

features to be appreciated and better performance in complex problems. A high 

number of layers, however, makes the training slower as the loss must be back 

propagated to the beginning of the network, because with the gradient vanishing, 

there is a loss of magnitude in the weight updates. A ResNet CNN avoids this 

problem by having “shortcuts, " in which the loss from deeper layers can be 

directly propagated back, allowing more than 100 layers to be trained efficiently 

(Figure 33). 

 

Figure 33-Schematic of the shortcuts for loss backpropagation 

 

The second module is a Region Proposal Neural Network (RPN), which 

scans the selected backbone feature map and creates a series of regions, called 

anchors, that may contain objects (Figure 34).  
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Figure 34 - RoI detection schematic. This network section scans the image and 

proposes bounding boxes for probable objects (GIRSHICK et al., 2014, 2015; HE et al., 

2018). 

 

The following module is the bounding box classifier, which analyzes the 

individual bounding boxes, and assigns a class to them or recognizes it as 

background (HE et al., 2018; REN et al., 2018). 

The last module is the segmentation mask, which analyzes each of the 

bounding boxes and segments the whole object that is supposed to be inside them 

(HE et al., 2018; REN et al., 2018). 

To the author's knowledge, this is the first time this particular architecture 

has been applied to maceral analysis and rank reflectance determination. 

 

3.8.1 Metrics  

Metrics are the way to assess the performance of a trained network. Most of 

them compare the results to the ground truth. The ground truth can be defined as a 

reference with the expected correct result. This section will present a few of the 

more common metrics in problems of classification and location of objects. 

 

3.8.1.1 Confusion matrix 

The confusion matrix allows for a quick analysis of an algorithm’s 

performance. Each row of the matrix represents the instances in a predicted class, 

while each column represents the instances in a real class or vice versa (Figure 

35). The name of the confusion matrix derives from the fact that it makes it easy 

to see if the system is mixing up two classes. 
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Figure 35 - Confusion matrix. 

 

The meaning of the confusion matrix labels are: 

-TP (True Positive) when the model's prediction is positive, and the ground 

truth is also positive; 

-TN (True Negative) when the model's prediction is negative, and the 

ground truth is also negative; 

-FP (False Positive) when the model prediction is positive, and the ground 

truth is negative; 

-FN (False Negative) when the model prediction is negative, and the ground 

truth is positive. 

In Figure 36a, we can see an example of TP, as both the ground truth (red 

rectangle) and the prediction (green rectangle) coincide. In other words, the RoI 

predicted by the model coincided with the appointment of the specialist. Figure 

36b and Figure 36c are examples of FP. In the first case, the prediction does not 

match the ground truth, and in the second case, there is no ground truth. However, 

the model makes a prediction. Figure 36d is an example of FN, in which the 

model could not make a prediction, with the image having a ground truth. 

 

Figure 36 - Examples of TP (a), FP (b and c), and FN (d) in object detection. 

 

An example of TN was not shown since it would be the case where the 

image lacks ground truth and prediction. In addition, when calculating the object 

detection metrics discussed in the following, true negatives are not necessary.. 
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In Figure 36a, we can see that a prediction doesn’t always (in fact, rarely 

ever) match the ground truth perfectly. Therefore, it is usually necessary to 

evaluate how good of a match they are, so the prediction can be considered correct 

(TP) or wrong (FP).  

 

3.8.1.2 Intersection over union 

IoU (Intersection over Union) is an essential concept in object detection 

problems, also referred to in the literature as Jaccard's Index. IoU consists of an 

evaluation metric for detecting objects in images, which assesses the similarity 

between the ground truth and the RoI inferred by the model. The closer this metric 

is to 1 indicates that the inferred RoI is closer to the real object in the field. 

Thus, the IoU is the ratio between the intersection and the union of ground 

truth with the prediction made, as shown in Figure 37. 

 

𝐼𝑜𝑈 =
𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡∩𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ

𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 ∪𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ
                                                           (8) 

 

 

Figure 37 - IoU = Ratio between the intersection and the union of ground truth with 

the prediction made. 

 

This metric is more critical during the network training than during the test 

per se, as only predictions achieving a minimum pre-established IoU can be 

considered correct for error estimation and weight updates. IoU is usually used 

during test to confirm whether a prediction is a TP, an FN or an FP, as explained 

above (The most common value being 0.5). However, due to the complexity of 

the macerals involved in this work, it is nearly impossible to annotate them as 

objects consistently. In other words, their actual border during delineation can be 

pretty arbitrary or subjective. 

Another critical point is that maceral composition is reported in terms of 

area fraction and not the number of objects, as the size and relevance of these 
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objects would vary quite a lot. Consequently, the following metrics were 

calculated regarding the total area segmented, not individual objects. That 

bypassed the need to use the IoU to validate the TPs. 

 

3.8.1.3 Precision 

The precision indicates how much the objects detected by the models belong 

to or approach the classes specified in the test data, that is, out of all detections 

made, precision quantifies how many were correct: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
                           (9) 

 

3.8.1.4 Recall 

Recall, also called sensitivity, is the rate of true positives in the model, 

which measures the probability of objects belonging to the ground truth being 

correctly detected. In practice, it indicates the relationship between the existing 

objects in the ground truth that were correctly detected, that is: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ
                               (10) 

 

Where false negatives (FN) are the ground truth annotations not detected by 

the model, thus, the recall is inversely proportional to the amount of FN.  

It is essential to highlight the difference that exists between recall and 

precision. A model can have outstanding precision, indicating the suitable class, 

but recognize few objects or “detect” few elements. Depending on the problem, 

one might be more important than the other.  

 

3.8.1.5 F1 - score 

F1-score simply evaluates both aspects of recall and precision and can be 

mathematically defined as the harmonic mean between the two: 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×(𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                                      (11) 
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3.9 Previous works on Maceral Analysis and Instance Segmentation 

Due to the commercial interest in coal, many attempts have been made in 

the past decades to automate coal analyses, saving labor and time. One of the first 

attempts to automatize the process was by CHAO et al. (1982). They were the 

first to implement a form of digital microscopy that allowed the computer to 

capture the selected points and register its maceral label (according to the 

operator's choice) and its reflectance based on the calibration of the microscope. 

They were then able to group those points in bins and build the first automated 

reflectance histograms, which became the basis of many other reflectance-based 

approaches for maceral group identification. Similarly, KUILI et al. (1988) also 

worked on an automatic “fingerprint” histogram collection for maceral group 

composition and vitrinite reflectance.  

Many attempts have been made at automating maceral analysis throughout 

the years; one of the earliest attempts was made by AGUS et al., 1994, in which 

optical microscopy was used to extract three different texture parameters 

automatically:  

- Angular second momentum (ASM) - Measure of image homogeneity 

(grey tones transitions). 

- Contrast (CON) - Measure of local variations present in the examined 

area. 

- Correlation (COR) - Measurement of linear grey scale dependencies in 

an image. 

They were measured in areas of the image identified as belonging to a single 

maceral in an attempt to characterize them (Figure 38). 

 

Figure 38 - Areas were manually chosen to extract the texture parameters; chosen 

to encompass only a single maceral (AGUS et al., 1994). 

 

After plotting the results for the parameters for the macerals collotelinite, 

sporinite, inertodetrinite, and semifusinite (Figure 39), they were able to verify 
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that there is indeed a texture difference between them, even though the standard 

deviation didn’t allow for consistent discrimination (AGUS et al., 1994). 

 

 

Figure 39 - 3D graph plotting the three texture parameters: Angular second 

momentum (ASM), Contrast (CON), and Correlation (COR) for the macerals semifusinite 

s, collotelinite c, fusinite f, and inertodetrinite i. To the left the dispersion of the 

measurements is shown, while to the right, the mean measurement of each group was 

plotted (AGUS et al., 1994). 

 

This was one of the first works to conclude that only a system capable of 

considering a wide array of abstract features would be able to characterize the 

maceral analysis problem successfully. As the neural network does precisely that, 

it lends credence to the proposal that it could be used to solve maceral 

classification.  

 Another attempt at automating the maceral composition and rank 

reflectance determination was (O’BRIEN G. et al., 2003). It took advantage of the 

different reflectance ranges for the three main maceral groups to classify them. 

Two hundred images from 40 different coals ranging from 0.48% to 2.13% mean 

vitrinite reflectance were used. By collecting random reflectance information from 

coal sample images pre-processed to remove resin and plotting it against their 

cumulative frequency, the authors obtained a full maceral reflectogram (FMR), 

which allowed them to estimate the amount of the three different groups and 

isolate the pixels referring to the vitrinite group, which allowed for an analysis of 

the vitrinite reflectance. It is understood that a change in slope in the FMR shows 

the transition between classes, as it reflects the three different population in the 

reflectance distribution. Liptinite, however, can’t be discriminated from mineral 

matter using this approach due to overlapping reflectance (Figure 40).  
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Figure 40 - Full maceral reflectogram (FMR) correction for maceral composition 

determination (A). Corrected FMR for a 0.97% reflectance sample(B). Adapted from 

(O’BRIEN et al., 2003). 

 

Even the first works mentioned here already faced many of the same 

challenges faced by the later ones, including i) the reflectance distinction between 

the three maceral groups is more pronounced in lower rank coals and becomes 

harder to resolve as they converge in higher ranks; ii) some degree of overlap in 

the lower and higher reflectance ranges of the maceral groups, and iii) difficulty to 

distinguish liptinite macerals from some minerals, as liptinite shares its 

reflectance, and sometimes even shape, with some dark minerals. Most of these 

issues would require a human operator to intervene, either correcting the 

reflectance ranges of the maceral groups visually or verifying if the images chosen 

are suitable to have their texture parameters extracted. These issues prevented 

these earlier methods from avoiding operator intervention entirely and becoming 

fully automated. 

The works mentioned so far seem to have shared two main ideas for 

approaching maceral classification: i) Using reflectance values to determine 

maceral groups (CHAO et al., 1982; KUILI et al., 1988; O'BRIEN et al., 2003; 

PETERSEN et al., 2013) or ii) using pre-defined texture parameters (AGUS et al., 

1994; CHAO et al., 1982), sometimes alongside reflectance as a further aid to 

distinguish maceral groups. Machine learning-based methods have the advantage 

of naturally exploring both approaches, built upon a self-learning algorithm. Their 
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most significant advantage lies in the sheer number of image features they can 

extract and work with (ranging from texture, shape, and size to color/grey value 

features). A combination of such features is what allows these methods to solve 

highly abstract problems (HE et al., 2018). However, one main drawback of 

machine learning methods is their current inability to "open" the network to assess 

which features were learned and used. However, their state-of-the-art performance 

on many image-related problems has inspired their recent use in coal petrography. 

A recent attempt at maceral segmentation using machine learning 

(TIWARY et al., 2020) used a random forest algorithm. The authors extracted 

features related to micro-structures and fed them to the random forest-based 

algorithm, which then was able to segment the three maceral groups and mineral 

matter. Vitrinite and inertinite were segmented to approximately 90% success 

rate, while liptinite had a lower success rate, which traditionally is the case for 

most automated maceral classification systems (Figure 41). 

Instead of annotating the maceral groups, the authors relied on an 

experienced coal petrographer to delineate triangular areas in the images that only 

contained one of the four main classes: vitrinite, inertinite, liptinite, and resin. By 

doing that, their model was able to extract correct features that described these 

classes and were able to reach high success rates. 

 

 

Figure 41 - Example image used for the ground truth (A). Ground truth for image A (B). 

Example of image for the model’s test (C). Random forest models result for image C (D). 

Red, green, blue, magenta, and cyan represent vitrinite, inertinite, liptinite, mineral matter, 

and resin, respectively. Adapted from (TIWARY et al., 2020). 

Another interesting attempt at maceral identification at a low rank 

reflectance (0.5%-0.8%) was by (IWASZENKO, S. and RÓG, L., 2021), which 

used a deep learning-based algorithm with a U-net architecture. With the aid of a 
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professional petrographer, the authors manually generated a ground truth for the 

three maceral groups and used them to train the network. The authors obtained 

success rates of over 90% for all three groups (Figure 42 and 43). 

 

 

Figure 42 - Original grey level image (a). Inertinite ground truth mask (b). Liptinite 

ground truth mask (c). Vitrinite ground truth mask (d) (IWASZENKO and RÓG, 2021). 
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Figure 43- Input images (a,d,g).Segmentation results for inertinite, vitrinite, and 

liptinite, respectively (b,e,h).Ground truth for inertinite, vitrinite, and liptinite, respectively 

(c,f, i). Adapted from (IWASZENKO and RÓG, 2021). 

 

WANG et al. (2019) performed an attempt at both maceral segmentation 

and rank reflectance determination. The authors built a dataset of 78 coal images 

in the 0.7%-1.79% rank range. They employed an adaptative k-means clustering 

to identify maceral groups and then utilized comprehensive features and a support 

vector machine to identify vitrinite regions. These regions were then analyzed 

with a random forest algorithm to extract information on the maximum mean 

reflectance (Figure 44). 
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Figure 44 – Flowchart for WANG et al. (2019)’s method for maceral segmentation 

and vitrinite reflectance determination. 

DBD
PUC-Rio - Certificação Digital Nº 1812763/CA



61 

 

Their model reached a root mean square error of 0.0424 for the vitrinite 

reflectance determination, by comparing the reflectance estimated with their 

method and the reference values they had. 

This thesis uses a single algorithm to perform classification and 

segmentation but works on 20X images instead of 50X. While the usage of 50X 

images provides their method with more detail for segmentation, 20X images 

allow the current approach to be more flexible with sample preparation as it is 

easier to have homogeneously focused images at lower magnification and provide 

for a faster scan of the sample. 

While no work was found that uses the proposed CNN model (Mask R-

CNN) for maceral segmentation, this model has found use in other areas of image 

analysis. Mask R-CNN (He et al., 2018) is a state-of-the-art neural network for 

instance segmentation, which has experienced a considerable boom since 2018 for 

many different applications. SALAU and KRIETER (2020), for example, were 

able to use a Mask R-CNN model to detect and segment cows in security camera 

images. They annotated the cows using the VIA software (DUTAA & 

ZISSERMAN, 2019), also used in this work (Figure 45). They manually 

delineated each cow and were able to ascribe a “standing” or “lying” feature to 

each cow.  

 

 

Figure 45 - Annotated image of cows using the VIA software. “standing” and “lying” 

information was also recorded but not used in that work (SALAU and KRIETER, 2020). 

 

They could annotate 575 images (479 and 96 for training and testing, 

respectively). They also proved that the dataset size is one of the most crucial 

points in this methodology. Once their annotation work was over, they plotted the 
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validation loss and their metric for different states of the dataset (Figure 46), 

proving that an increase in size does benefit the model. 

 

Figure 46- Validation loss and optimal stopping (A) and bounding box metrics and 

mask metrics (B) plotted against the proportion of the full dataset used (SALAU and 

KRIETER, 2020). 

 

Some other interesting applications were HE et al. (2022), which used a 

modified Mask R-CNN to identify and extract oil sites from satellite multi-sensor 

remote sensing images and LAI et al. (2022), which attempted to use a 

specifically improved Mask R-CNN to correctly and precisely segment coal 

gangues, so that accurate shape and location information could be obtained. LAI 

et al. (2022) also compared such results to those obtained from YOLO v4, 

CenterNet, U-Net, and Deeplab v3+, concluding that the best results were 

obtained for their optimized Mask R-CNN. GU et al.(2022)  was an extensive 

review of 2D instance segmentation, comparing different CNN architectures, 

which concluded that two-stage methods (such as Mask R-CNN), that is, those 
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that first detect objects and then segment them, dominate the current frontier of 

general instance segmentation. 

This review makes the author confident that machine learning can be a 

powerful tool for maceral segmentation, aiding petrographers and making coal 

analyses more time efficient, especially the Mask R-CNN architecture. However, 

to the author's knowledge, there has not been a deep learning-based approach 

focused only on collotelinite aiming to automate its reflectance determination and 

no other work has attempted to use Mask R-CNN for maceral segmentation.  

Another huge differential of this work was the vast number of images used for the 

dataset, with 260 images (and over 17000 annotated objects) for five samples 

ranging from 0.97%-1.20%. These images were captured at random positions, 

allowing the dataset to represent an actual analysis. 

While 260 images is usually a very small number of images for a deep 

learning approach, it is considerably larger than the number of images used in 

other related works in this area (WANG et al. ,2019; TIWARY et al., 2020; which 

used 78 and 162 images respectively). The reason for that is the complexity of 

manually preparing the dataset, which seriously hinders the number of images that 

can be prepared in a reasonable time. 
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4 
Methodology 

4.1 Sample preparation and image acquisition 

For this study, 13 samples with random reflectance (Rr%) range of 0.97%-

1.8% (Table 2) were prepared and five of them were annotated and used to train 

the network. They have different origins and correspond to either single seams 

(e.g., Samples C and D) or commercial coals (e.g., Sample B). Even though the 

initial interest is to develop a method for natural coals, the sample B, a 

commercial sample, was also included. This was done because sample B presents 

a considerable amount and variety of inertinites that could help train the models. 

However, due to a blend of different coal ranks, the test results without it will also 

be presented. 

 

Table 2 - Samples, random mean reflectance values (Rr%) as received, and basin origin  

(* samples used for network training). 

Samples Rr% Basin/Origin 

Sample A* 0.97% East coast USA 

Sample B* 1.03% Kuzbass, Russia 

Sample C 1.03% Bowen Basin, Australia 

Sample D* 1.04% Bowen Basin, Australia 

Sample E* 1.20% Moatize Basin, Mozambique 

Sample F* 1.20% Moatize Basin, Mozambique 

Sample G 1.15% Moatize Basin, Mozambique 

Sample H 1.26% China 

Sample I 1.42% Brookwood, Alabama 

Sample J 1.47% China 

Sample K 1.50% China 

Sample L 1.51% East Coast, USA 

Sample M 1.80% Bowen Basin, Australia 

 

DBD
PUC-Rio - Certificação Digital Nº 1812763/CA



65 

 

The sample preparation followed the traditional ISO 7404-2 (2009) 

standard; each sample was crushed and made to pass a 1 µm sieve. Each sample 

was mixed with the resin (Epofix) and hardener and stirred until it acquired 

consistency and solidified. Afterward, the sample was polished, following the 

same standard. 

The images were captured on a Leica DM6000 optical microscope using the 

Diskus-Fossil program from Hilgers Technisches Buero. The microscope was 

calibrated to a standard with known reflectance (YAG, 0.908%) and a black 

standard (0.0%), and images were captured as 8-bit, with 256 grey levels. For the 

same lighting condition to be used for all samples, which range from 0.97 to 1.8% 

reflectance, it was necessary to utilize a non-linear Look-Up Table (LUT). 

Applying a LUT to an image is a typical image processing procedure in which the 

pixel values of an image are recalculated to new ones, following an equation. 

Suppose the lighting conditions were adjusted and the images captured with a 

linear LUT. In that case, lower rank images could become too dark, or higher rank 

images could become too bright (over or under-saturated). The Diskus-Fossil 

system, however, only allows for a single other LUT called enhanced. 

The images were captured with a 20X objective (0.5µm/pixel resolution), 

though vitrinite reflectance can be carried out using 32x or 50x objectives (ISO 

7404-5, 2009). The reason is that it was difficult to capture homogeneously 

focused images with a 50X objective consistently. Besides that, using 20X lenses 

allows for a faster capture of the same area, as each image covers a larger field of 

view of the sample. 

 

4.2 Maceral Analysis  

4.2.1 Dataset Creation  

The dataset's images were annotated with the VGG (Visual Geometry 

Group) Image Annotator (VIA). VIA allows for a very efficient point-by-point 

delineation of objects in an image, allowing the operator to ascribe one or multiple 

classes for a single object, making it possible to record each object at maceral and 

maceral group level alongside its coordinates in the image (Figure 47). This 

annotation provides the ground truth for training and test (DUTAA & 

ZISSERMAN, 2019). 
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Figure 47- Example image annotated with VIA; it showcases the annotation that 

can be recorded with this software. 

 

A total of 400 images were taken for each of the 13 samples presented in 

Table 1. For training and test of the model, 52 images for each of the following 

samples were taken: Sample A, Sample B, Sample D, Sample E, and Sample F, 

covering a rank reflectance range of 0.97%-1.2%. With the help of a certified 

petrographer, the 260 images were analyzed and manually delineated at the 

maceral level and classified at maceral and maceral group levels (according to 

ICCP, (1998, 1993, 2001)) and used to train the network.  

The remaining 348 images for each of these five samples were used for the 

collotelinite reflectance determination tests alongside the 400 images for the nine 

samples not used in training. The total number of objects annotated in terms of 

individual macerals and macerals groups can be seen in Table 3.  

The images were split into a training and a test set; this split was made to 

preserve approximately a 70%/30% ratio for the annotated objects between the 

training and the test sets, respectively.  
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Table 3 - Number of annotations made when considering the individual macerals. 

Maceral Groups Macerals Training set Test set 

Vitrinite 
Collotelinite 3037 1318 

Collodetrinite 566 317 

Inertinite 

Fusinite 818 396 

Semifusinite 2115 1208 

Inertodetrinite 1799 1037 

Liptinite 

Sporinite 3132 1611 

Cutinite 201 79 

Resinite  13 4 

Liptodetrinite 22 6 

 

Vitrodetrinite, telinite, corpogelinite, gelinite, macrinite, funginite, and 

secretinite did not reach more than ten total annotations each. 

The individual macerals were annotated and then classified with the aid of 

certified petrographer Dr. Sandra Rodrigues from the University of Queensland. 

 

4.2.2 Generic Description of Training and Inference Parameters 
of the Models 

The Mask R-CNN used a ResNet 101 (HE et al., 2015) as a backbone, 

which is an efficient and widely tested network. The following is a generic 

description of the parameters used to train the many models that will be presented. 

Any specific modification done to a model will be addressed in its description, but 

unless explicitly mentioned, the parameters used will be the ones described in this 

section. 

During training, errors are calculated individually for the bounding box, 

the segmentation mask, and the class labeling for the mask R-CNN and the 

bounding box and class errors for the Region Proposal Network stage (RPN). The 

cost function used to calculate the mask error was the binary cross-entropy, the 

cost function used to calculate the bounding box error for the RPN was the L1 

loss function, while the other errors were calculated with the categorical cross-

entropy function (HE et al., 2022).  

Training was performed with cross-validation, in which a percentage of 

random images of the training set is held out each epoch (in this case, 20% ) to 

follow the cross-validation error evolution. The learning algorithm used to 

minimize error and update the weights was the stochastic gradient descent. 
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Training: a learning rate of 0.001 was used, with four graphical 

processing units (GPUs) and one image trained on each GPU at a time. Batch size 

was calculated as images per GPU x GPU count = 1 x 4 = 4. The number of steps 

per epoch was taken as: number of images / batch size = 174 / 4 = 43 steps. An 

ROI is considered positive concerning the ground truth when it presents IoU ≥ 

0.5. Input images were resized to be 1344 x 1344 pixels square, Learning 

momentum was kept at 0.9, and weight decay was kept at 0.0001. The RPN 

anchor scales were kept at the default values: (32, 64, 128, 256, and 512). The 

training was executed for 1300 epochs, approximately 48h on an AWS EC2 P3 

instance: p3.8xlarge with 4 GPUs Tesla V100, 32 vCPUs, and 244 GiB of RAM 

(Amazon, 2022), as the results reached an apparent plateau afterward. 

Inference: All overlapping parameters between training and inference 

were kept the same. The model kept the threshold for displaying a segmented 

instance at a default > 0.50 certainty score. The output was taken as both 

segmentation masks over the image for visual evaluation and a binary image of 

segmented pixels that could be used later for image processing and subsequent 

collotelinite reflectance determination. 

 

4.2.3 Dataset grouping and models trained 

Due to the inherent maceral annotations imbalance found within the dataset, 

many different grouping approaches were attempted when training the network. 

The complex hierarchical annotation provided by VIA made it possible to easily 

group and regroup the many different macerals into their groups. 

Many attempts at grouping the macerals were made, but for the sake of 

simplicity, only a small selection of them will be discussed here. Among the many 

different trained models, the following ones stand out: 

• Model 1 - one single model for the most relevant and abundant 

macerals (collotelinite, collodetrinite, sporinite, fusinite, 

semifusinite, and inertodetrinite). 

• Model 2 - one single model for the three main maceral groups plus 

the semifusinite maceral. 

• Model 3 - encompassing the vitrinite maceral group. 

• Model 4 - encompassing the inertinite maceral group. 

• Model 5 - encompassing the liptinite maceral group. 

• Model 6 - encompassing the liptinite maceral group but trained with 

different anchors. 

• Model 7 - a model for identifying inertinite but distinguishing 

semifusinite as a distinct class. 

DBD
PUC-Rio - Certificação Digital Nº 1812763/CA



69 

 

• Model 8 - a model focused on identifying the most critical/abundant 

macerals in the inertinite group (fusinite, semifusinite, and 

inertodetrinite). 

• Model 9 - a model focused on identifying the semifusinite maceral. 

• Model 10 - a model focused on identifying the collotelinite maceral. 

A non-extensive list of the tests not mentioned here follows: 

• Varying the number of epochs in training 

• Training only the heads layers of the network 

• Altering the rpn_nms_threshold parameter, which controls the 

fraction of RPNs suppressed during the RPN proposals stage, 

• Altering the post_nms_rois_training parameter, which controls the 

number of RoI’s kept after the suppression stage during training, 

• Altering the post_nms_rois_inference parameter, which controls the 

number of RoI’s kept after the suppression stage during inference, 

• Altering the image_resize_mode (square vs. Pad 64) parameter, 

which controls how the images are resized to “fit” the network, 

either resizing it to be a square or padding it with zeros,  

• Altering the image_min_dim parameter, which controls the 

minimum dimension size an image can have after being resized, 

• Altering the image_max_dim parameter, which controls the 

maximum dimension size an image can have after being resized, 

• Altering the train_rois_per_image parameter, number of RoI’s per 

image that is fed to the classifier, 

• Altering the max_gt_instances parameter is the maximum number of 

ground truth instances used in an image. 

• Altering the loss_weights parameters, which govern the weights 

given to the different losses from the various stages of the network 

(loss from the RPN stage vs. loss from the MRCNN stage as well as 

losses related to the bounding box accuracy, correct classification, 

and the segmentation masks) 

• And others... 

However, one parameter not altered was the score of certainty of the shown 

segmented objects. Alongside every single-segmented object, the network 
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evaluates its confidence, and this score will be seen in some of the following 

segmentation images. The score is also a parameter used during inference by 

establishing a score threshold above which the corresponding segmentation will 

not be discarded. The score threshold was maintained as a default 0.5 certainty. 

By increasing the score threshold, it would be possible to eliminate 

segmented objects that the network isn’t as sure about, including, most likely, 

mostly FPs, but also unavoidably a few TPs. The practical effect would be 

improving precision while slightly lowering or, at best, not changing the recall. 

Since most models discussed here showed relatively high precisions and low 

recalls, there was no advantage in increasing the score threshold. As nearly all 

objects segmented by the network were observed to have a>0.7 score, there was 

also no reason to lower the value. Thus, no reason was found to alter that 

parameter. 

An illustration of segmented objects with their scores for model 2 can be 

seen in Figure 48. 

 

Figure 48 – Segmented image for model 2. Notice how the vitrinite objects have 

very high scores (0.99-1.0), while liptinite objects have more varying scores (0.74- 0.99). 
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4.3 Collotelinite Reflectance Determination 

 

To properly determine vitrinite reflectance, it was necessary to standardize 

image capture by calibrating the microscope and determining the grey level- 

reflectance relation. 

Because the current work focused on analyzing  in the rank reflectance 

range of 0.97%-1.8% Rr, the 1.80% sample was used to determine the best 

capture conditions. The reason for that is because it features both the lowest 

reflectance pixels (the  Epofix resin) and the highest reflectance pixels expected 

(the vitrinite and inertinite pixels). Therefore, lighting conditions capable of 

capturing both vitrinite and inertinite pixels in this sample, while avoiding light 

saturation, would ensure that no such saturation would occur for any macerals in 

the desired rank reflectance range. 

To discover the relationship between the enhanced mode grey levels and the 

reflectance values, a one pixel-wide line selection was used to collect pixels 

belonging to the resin, vitrinite, and inertinite (Figure 49). This is necessary 

because the Hilgers system is calibrated and can calculate the reflectance values 

automatically; the captured images were processed outside the Diskus Fossil 

software environment. 

 

Figure 49 – Sample M image used for calibration. The yellow line collected the grey 

levels and reflectance values of the vitrinite and inertinite groups and of the resin. 

 

DBD
PUC-Rio - Certificação Digital Nº 1812763/CA



72 

 

The enhanced grey levels and their corresponding reflectances were 

extracted, and an exponential curve was used to fit them (Figure 50) and 

determine the equation that correlates with them (seen in equation (12)): 

y=y0+AeR0X                                                                                                     
(12) 

where y is the reflectance value, y0 is 0.82 %, A is 0.75%, R0 is 0.00883 

(enhanced grey level)-1, and X is the enhanced grey level. The fitting had a 

correlation coefficient r² of 0.9979. 

 

Figure 50 - Enhanced grey values and their corresponding reflectance alongside 

the exponential curve (in red) that fitted the data points. 

 

With the equation determined, it is then possible to analyze the collotelinite 

segmented by the Mask R-CNN and determine the reflectance from the grey 

value, creating a calibration scale for any image captured in enhanced mode and 

aforementioned lighting conditions.  

This is a critical step for this methodology. If it is to be employed by 

another operator, they would need to settle on lighting condition they can work 

with, determine their equivalent of equation (2), and update it in the rank 

reflectance module (Section 5.3). Once this one-time calibration is performed, the 

operator would be able to capture as many images and samples as necessary under 

the chosen lighting conditions. 
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5 
Results and Discussion 

5.1 Macerals and Maceral Groups  

5.1.1 Model 1 (collotelinite, collodetrinite, sporinite, fusinite, 
semifusinite and inertodetrinite) 

The first model trained focused on segmenting all the most relevant and 

abundant macerals found within the dataset: collotelinite and collodetrinite 

(belonging to the vitrinite group); fusinite, semifusinite, and inertodetrinite 

(belonging to the inertinite maceral group); and sporinite (main maceral of the 

liptinite group). Figure 51 and Figure 52 show the model’s attempt at 

segmentation in a 1.2% and a 0.97% vitrinite reflectance samples. 

 

Figure 51 - Original grey scale image for a 0.97% sample (a). Corresponding 

segmentation results for model 1 (b). 

 

Figure 51 also shows the three more common segmentation errors found in 

this model. Error 1 is an “indecision” of the model between collotelinite and 

collodetrinite that seems to occur occasionally in more complex particles (with 

many intertwined macerals). Error 2 is an infrequent misclassification of fusinite 

as collotelinite; it seems to happen more frequently when the fusinite is 

remarkably smooth and homogeneous. Error 3 is a misclassification of fusinite as 

semifusinite, it is the hardest ones to assess, as it usually occurs when it can be 

challenging even for an operator to make the distinction. It is also important to 

acknowledge a degree of “randomness” to these errors, especially the last 2; 

Figure 51b shows other similar fusinite objects that were properly classified. 
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Figure 52 - Original grey scale image for a 1.2% sample (a). Corresponding 

segmentation results for model 1 (b). 

 

However, due to the high number of images, “randomness” of the errors. 

and the complexity of maceral segmentation, it isn't easy to assess the model’s 

performance based only on a visual analysis of the images. It is more appropriate 

to use the validation metrics. 

Table 4 shows the validation metrics (Precision, Recall, and F1-score) for 

Model 1. The model’s greatest strength was in segmenting collotelinite. A recall 

of over 75% indicates that the model correctly identified over 75% of all 

collotelinite annotated. However, the model fails considerably when identifying 

collodetrinite (7.97% recall). It is possible that is due to the common presence of 

other macerals inside the collodetrinite and the fact that it has a highly varying 

structure (sometimes being hard to distinguish from semifusinite). That marks an 

abysmal performance overall for the vitrinite group; despite collotelinite being 

usually the most abundant maceral, collodetrinite also occurs frequently (compare 

883 collodetrinite objects to the 4355 collotelinite objects in this dataset according 

to Table 3).  

Table 4 - Validation metrics for model 1. 

Class Precision (%) Recall (%) F1-score (%) 

Collotelinite 63.71 75.06 68.92 

Collodetrinite 18.03 7.97 11.06 

Fusinite 60.00 32.43 42.11 

Semifusinite 38.16 20.02 26.26 

Inertodetrinite 43.94 18.53 26.07 

Sporinite 41.60 16.51 23.64 

 

An even worse problem can be seen in the inertinite group, where the most 

abundant maceral (semifusinite with 2115 instance objects annotated) had a 

meager 20.02% recall rate. 

This leads the author to infer that any trained model would have difficulty 

doing a direct individual maceral segmentation on the images due to the 
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complexity of maceral segmentation. Therefore, for the successive attempts, the 

macerals were grouped in their maceral groups according to ICCP, and both 

collective and individual models were trained for each group plus semifusinite. 

It is also interesting to discuss that Figure 52 highlighted a prevalent 

segmentation issue; the segmentation is more likely to fail at the edges of the 

image due to how the kernels “scan” them. All models presented that issue to a 

varying degree; the vitrinite/collotelinite models presented it more obviously due 

to those macerals being larger and closer to the edges. This work didn’t concern 

itself with fixing this issue because i) for reflectance determination, it is only 

necessary to have a representative number of pixels, the segmentation failure at 

the edges doesn’t hinder the process when hundreds of images were used; and ii) 

for area fraction results, the amount of area lost is small compared to the rest of 

the image. Despite that, it would be possible to fix this issue by automatically pre-

adding 0 value pixels around the image before segmenting it or, more simply, 

cropping the borders after segmentation, analyzing only the inner area. 

It is important to highlight that the author doesn’t think all three metrics 

should be given the same weight. When trying to determine maceral composition, 

it is essential detect as much of the macerals as possible, which makes recall the 

vital metric in that regard. Because of that, special emphasis will be given to the 

recall metric for all of the following models, except model 10, which will be 

discussed later. 

 

5.1.2 Model 2 (vitrinite, inertinite, liptinite, and semifusinite) 

This model attempted to group the macerals into the three maceral groups 

but keep the semifusinite apart from the other inertinites. This is because 

semifusinite is partially reactive, unlike other inertinite macerals (≈30%). That 

fact alone makes it technologically interesting for a model to be able to evaluate 

the semifusinite apart from the other macerals. Collotelinite, telinite, 

collodetrinite, gelinite, and corpogelinite were grouped as vitrinite. Fusinite, 

funginite, secretinite, macrinites, and inertodetrinite were grouped as inertinite. 

Sporinite, cutinite, resinite, and liptodetrinite were grouped as liptinite. 

Semifusinite was kept as its class apart from the other inertinites. 

The segmentation results can be seen in Figure 53. One of the most 

recurring identified segmentation mistakes was that the model struggled to 

distinguish the semifusinite from the other inertinites, also seen in Figure 53a and 

50b. 
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Figure 53 - Original grey scale image for a 1.04% sample (a). Corresponding 

segmentation results for model 2 (b). Note the big fusinite object in (a) being partially 

misclassified as semifusinite. 

The metrics for the model can be seen in Table 5. 

Table 5 - Validation metrics for model 2. 

Class Precision (%) Recall (%) F1-score (%) 

Vitrinite 57.58 68.86 62.72 

Inertinite 60.19 23.86 34.17 

Liptinite 34.73 10.79 16.46 

Semifusinite 31.52 17.16 22.22 

 

Grouping the collotelinite and collodetrinite was beneficial to the vitrinite 

group. The recall obtained (68.86%) for vitrinite was expectedly lower than the 

one obtained from collotelinite in model 1 (75.06%) but much higher than the 

recall obtained for collodetrinite (7.97%), indicating an overall improvement for 

the vitrinite group (considering vitrinite encompasses 3037 collotelinite and 566 

collodetrinite objects). 

Grouping the fusinite and the inertodetrinite did not seem as beneficial to 

the inertinite group. The recall obtained (23.86%) for inertinite was expectedly 

lower than the one obtained for fusinite in model 1 (32.43%) but higher than the 

recall obtained for inertodetrinite (18.53%). Despite being numerous, 

inertodetrinites are much smaller than fusinites, thus making it inconclusive if this 

intermediary recall was an improvement. Being kept separated from the other 

inertinites did not improve the semifusinite results either, as the model struggled 

to distinguish it from the other inertinites, As seen in Figure 53. 

Grouping the liptinites also did not improve the metrics for the group. Due 

to the high complexity of the macerals, it is possible that the models would benefit 

from focusing on learning single classes instead of many. Therefore, individual 

models for vitrinite, inertinite, and liptinite were tested next.  
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5.1.3 Model 3 (vitrinite) 

This model was trained by grouping all individual vitrinite macerals 

(collotelinite, telinite, collodetrinite, gelinite, and corpogelinite) as vitrinite only 

and all the rest as background (with a total of 5238 instance objects annotated 

according to Table 3). An example of segmentation can be seen in Figure 54. 

  

Figure 54 - Original grey scale image for a 1.2% sample (a). Corresponding 

segmentation results for model 3 (vitrinite) (b). 

 

Table 6 shows a considerable improvement for all metrics compared to both 

collotelinite and collodetrinite from model 1. Possibly because the individual 

macerals have more in common with each other than with macerals from other 

groups, and because the model doesn’t occupy itself with the other macerals, this 

“lessened” the burden during the model’s training. 

Table 6 - Validation metrics for model 3. 

Class Precision (%) Recall (%) F1-score (%) 

Vitrinite 81.07 88.42 84.59 
 

Because vitrinite is the maceral group that is most likely to contain other 

macerals/mineral matter inside it, it is possible to see in Figure 55 that the model 

is expected to include pixels of these inclusions as vitrinite. This indicates that 

these results would have to be refined for an area fraction or rank reflectance 

determination analysis. 
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Figure 55 - Original grey scale image for a 1.04% sample (a). Corresponding 

segmentation results for model 3 (vitrinite) (b). Notice how the cracks and mineral matter 

pixels were segmented alongside the actual vitrinite. 

5.1.4 Model 4 (inertinite) 

This model was trained by grouping all individual inertinite macerals 

(fusinite, semifusinite, funginite, secretinite, macrinites, and inertodetrinite) as 

inertinite only (with a total of 7373 instance objects annotated according to Table 

3). An example of segmentation can be seen in Figure 56 and Figure 57. 

 

 

Figure 56 - Original grey scale image for a 1.03% sample (a). Corresponding 

segmentation results for model 4 (inertinite) (b). 

 

DBD
PUC-Rio - Certificação Digital Nº 1812763/CA



79 

 

 

Figure 57 - Original grey scale image for a 1.04% sample (a). Corresponding 

segmentation results for model 4 (inertinite) (b). 

 

Table 7 shows the test results for model 4 and, like model 2, also offers a 

considerable improvement on all metrics compared to model 1.  

Table 7 - Validation metrics for model 4. 

Class Precision (%) Recall (%) F1-score (%) 

Inertinite 90.81 42.11 57.54 

 

Even though this model achieved a very high precision of 90.81%, it still 

has a very low recall of 42.11%. A low recall and high precision indicate that the 

model correctly identifies nearly everything it tries to segment, but it cannot 

segment as many objects. This can be easily seen in Figure 56 and Figure 57. 

 

5.1.5 Model 5 (liptinite) 

This model was trained by grouping all individual liptinite macerals 

(sporinite, cutinite, resinite, and liptodetrinite) as liptinite only (with a total of 

5068 instance objects annotated according to Table 3). An example of 

segmentation can be seen in Figure 58 and Figure 59. 
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Figure 58 - Original grey scale image for a 0.97% sample (a). Corresponding 

segmentation results for model 5 (liptinite) (b). 

 

 

Figure 59 Original grey scale image for a 1.04% sample (a). Corresponding 

segmentation results for model 5 (liptinite) (b). 

 

Table 8 shows the validation metrics for model 5. This model improved 

over model 1, though not nearly as much as models 3 and 4. Since 4743 out of the 

5068 liptinites were sporinite, it is believed that the improvement seen here was 

mainly due to the model being able to focus solely on learning the liptinite 

features and not really because of the grouping of the sporinite and cutinite 

objects. 

Table 8 - Validation metrics for model 5. 

Class Precision (%) Recall (%) F1-score (%) 

Liptinite 67.46 22.53 33.78 
 

Because of the massive number of tiny liptinites in a picture, the operator 

couldn’t annotate every one of them. That causes an issue with the precision 

metric; whenever the model identifies a liptinite present in the image that wasn’t 

annotated, it will be incorrectly classified as a False Positive (FP). This means that 
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the liptinite model's precision and F1-score will probably always be lower than 

their actual values, and recall becomes the most critical metric in this case. 

Similar to model 4, this model still experiences a low recall and relatively 

high precision.  

 

5.1.6 Model 6 (liptinite, different anchors) 

This model was trained by grouping all individual liptinite macerals 

(sporinite, cutinite, resinite, and liptodetrinite) as liptinite only (with a total of 

5068 instance objects annotated according to Table 3).  

This is the only model with parameters slightly different from the ones 

described in section 4..2.2. In this case, the altered parameter was the RPN 

anchors, which are used by the network to establish the size and shape of the ROI 

that will be segmented. Due to the wide variety of sizes and shapes the macerals 

exhibit, it is usually not worth it to vary the RPN anchors, and they were left at 

their default values of (32, 64, 128, 256, 512) pixels. However, since this model is 

only concerned with liptinites, which are consistently smaller than the other 

macerals, the RPN anchors were adapted to suit them better.  

The anchors chosen were (8,24,48,64,152) as most liptinites could be found 

within the 0-150 pixels diameter (Feret) range (Figure 60). Since the distribution 

is skewed towards lower values, the anchors were chosen to favor the 0-64 pixels 

diameter range. The distribution was calculated using the same hand-drawn 

annotations used as ground truth (Figure 47). 

One important note is that all sizes here are referred to in pixels, as the 

model works on the image in terms of its pixels and not its real scale. 

 

Figure 60 - Feret distribution for all liptinites manually annotated in the dataset. 
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An example of segmentation can be seen in Figure 61 and Figure 62.  

 

 

Figure 61- Original grey scale image for a 1.04% sample (a). Corresponding 

segmentation results for model 6 (liptinite) (b). 

 

 

Figure 62 - Original grey scale image for a 0.97% sample (a). Corresponding 

segmentation results for model 6 (liptinite) (b). 

 

Table 9 shows the validation metrics for model 6. It can be seen that altering 

the anchors positively impacted recall, which improved from 22.53% to 25.83%. 

Since recall is considered the primary metric for liptinite, this model can be 

regarded as superior to model 5, despite the loss in precision. Altering the size of 

the anchors to be smaller and more suitable to liptinites had, therefore, a positive 

impact on the model. 

 

Table 9 - Validation metrics for model 6. 

Class Precision (%) Recall (%) F1-score (%) 

Liptinite 64.57 25.83 36.85 
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5.1.7 Model 7 (inertinite and semifusinite) 

This model was trained by grouping all individual inertinite macerals 

(fusinite, funginite, secretinite, macrinites, and inertodetrinite) as inertinite (with a 

total of 4050 instance objects annotated according to Table 3), except for the 

semifusinite maceral, which was kept as a distinct class. An example of 

segmentation can be seen in Figure 63 and Figure 64. 

 

 

Figure 63 - Original grey scale image for a 1.03% sample (a). Corresponding 

segmentation results for model 7 (b). 

 

 

Figure 64 - Original grey scale image for a 1.2% sample (a). Corresponding segmentation 

results for model 7 (b). 

 

Table 10 shows the validation metrics for model 7. Despite what was 

expected, splitting the semifusinite from the other macerals did not result in any 

performance gain. Precision and recall plummeted for both classes compared to 

the sole inertinite model. Therefore, another approach will be necessary if 

semifusinite is to be segmented. 
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Table 10 - Validation metrics for model 7. 

Classes Precision (%) Recall (%) F1-score (%) 

Inertinite 65.60 18.19 28.48 

Semifusinite 26.96 15.19 19.44 

 

5.1.8 Model 8 (fusinite, semifusinite and inertodetrinite) 

This model was trained for all three main individual inertinite macerals 

(fusinite, semifusinite, inertodetrinite). The motivation for this training was to 

achieve better results for all three macerals, as they aren’t as imbalanced as the 

macerals in the other two groups. An example of segmentation can be seen in 

Figure 65, Figure 66, and Figure 67. 

 

Figure 65 - Original grey scale image for a 1.04% sample (a). Corresponding 

segmentation results for model 8 (b). 

 

Figure 66 - Original grey scale image for a 1.2% sample (a). Corresponding 

segmentation results for model 8 (b). 
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Figure 67 - Original grey scale image for a 1.04% sample (a). Corresponding 

segmentation results for model 8 (b). 

Table 11 shows the validation metrics for model 8. As with model 7, 

splitting the inertinite group into three macerals did not translate into any 

perceivable gain for the model’s overall performance. Model 4 remains the best 

model for inertinite segmentation. 

 

Table 11 - Validation metrics for model 8. 

Classes Precision (%) Recall (%) F1-score (%) 

Fusinite 54.78 34.05 42.00 

Semifusinite 39.19 12.76 19.25 

Inertodetrinite 49.13 12.03 19.33 

 

5.1.9 Model 9 (semifusinite) 

This model was trained to focus on the single maceral semifusinite, which 

belongs to the inertinite maceral group (with a total of 3323 instance objects 

annotated according to Table 3). An example of segmentation can be seen in 

Figure 68 and Figure 69. In Figure 68, it can be seen that the model is 

misclassifying a huge fusinite as semifusinite. In Figure 69, it can be seen that the 

model also cannot identify many of the present semifusinites. 
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Figure 68 - Original grey scale image for a 1.04% sample (a). Corresponding 

segmentation results for model 9 (b). Note the big fusinite object in (a) being partially 

misclassified as semifusinite. 

 

 

Figure 69 - Original grey scale image for a 1.20% sample (a). Corresponding 

segmentation results for model 9 (b). Note the big semifusinite object in (a) being 

completely ignored by the model. 

 

Both mistakes above reflect the model's poor metrics, as seen in Table 12. 

These metrics seem even lower than the ones obtained for semifusinite in model 1 

(Table 4). That means the semifusinite model didn’t benefit from focusing on a 

single class, unlike the others. It might be that not giving the model any other 

option during training might be hampering the learning. Since semifusinite has a 

very high intra-class variance and can occasionally be very similar to vitrinite 

macerals or fusinite, it might be that not allowing the model to learn the other two 

options is reducing its ability to distinguish between them. 

Table 12 - Validation metrics for model 9. 

Class Precision (%) Recall (%) F1-score (%) 

Semifusinite 45.15 10.23 16.68 
 

This is a setback, as an efficient semifusinite model could provide a way to 

quantify it separately from the total inertinite. One possible way to address this 

issue would be to improve the inertinite model and train an individual inertinite 

model similar to model 8 only on the segmented results. It is possible that, by 

training a model identical to 8 only on the segmented inertinite results, better 

results could be achieved as there would be less “noise” present in the images. 

Such images would have less of an intraclass variety, making them easier to be 

dealt by the network. 

Alternatively, it is possible that a single class model could work for 

semifusinite. Due to its intrinsic complexity, a much higher number of annotated 

objects would be necessary to achieve good results.  
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5.1.10 Model 10 (collotelinite) 

This model was trained to focus on the single maceral collotelinite, which 

belongs to the vitrinite maceral group (with a total of 4355 instance objects 

annotated according to Table 3). An example of segmentation can be seen in 

Figure 70. 

 

Figure 70-Original grey scale image for a 1.04% sample (a). Corresponding 

segmentation results for model 10 (collotelinite) (b). 

 

As with the vitrinite model, it is possible to see in Figure 70 that the model 

is likely to include pixels inclusions not belonging to collotelinite. This indicates 

that these results would also have to be refined for rank reflectance determination 

analysis. 

Table 13 shows that the model had similar success rates to the vitrinite 

model (Table 6). Coal rank is traditionally assessed by measuring the maximum 

or mean random vitrinite reflectance. However, the standards advise making the 

measurement specifically on the collotelinite individual maceral (ASTM D 2798, 

2011; ISO 7404-5, 2009; AS 2856.3, 2000). Due to being, by definition, a very 

homogeneous maceral (free from other maceral inclusions/“clean” and smooth), 

its reflectance exhibits a more homogeneous distribution across the coalification 

model, having “less noise.” Since both the collotelinite and vitrinite models have 

similar success rates and the collotelinite, by definition, would have less noise in 

its reflectance distribution, the collotelinite model is the more appropriate one to 

be used for rank reflectance determination.  

Table 13 - Validation metrics for model 10. 

Class Precision (%) Recall (%) F1-score (%) 

Collotelinite 81.67 85.25 83.42 
 

It should be highlighted that in this case, precision is the more relevant 

metric, as this model should be used for vitrinite reflectance determination. Unlike 

maceral composition, it is important that the vitrinite reflectance determined 

represents the sample. Because of that, it is more important to make correct 
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predictions than it is to detect every collotelinite particle available. As the network 

can be run over hundreds of images in minutes, it is not important that it detects 

every collotelinite, even if it only detects a few, it will eventually have a 

statistically relevant population. Therefore, in terms of vitrinite reflectance 

analysis, precision is a more relevant metric than recall, and model 10 does have 

higher recall than model 3 (vitrinite). 

 

5.1.11 Comparative discussion of the models  

Upon inspecting the validation metrics for the previous models, it was clear 

that the best segmentation results were obtained for models 3 (vitrinite), 4 

(inertinite), 5 (liptinite), and 10 (collotelinite). Table 14 shows the results for the 

best segmentation models. Despite being necessary for the training due to the high 

amount of inertinites, sample B is a blended coal, so it is interesting to evaluate 

the models, including only the samples of natural unprocessed single component 

coals. Those results are also included in Table 14.  

Table 14 - Validation metrics for models 2, 3, and 5, considering and disregarding sample 

B images. 

Classes Precision (%) Recall (%) F1-score (%) 

Vitrinite 81.07 88.42 84.59 

Vitrinite (no sample B) 89.42 89.04 89.23 

Collotelinite 81.67 85.25 83.42 

Collotelinite (no sample 
B) 

83.72 85.84 84.77 

Inertinite 90.81 42.11 57.54 

Inertinite (no sample B) 94.81 54.01 68.81 

Liptinite 64.57 25.83 36.85 

Liptinite (no sample B) 62.95 26.20 37.00 

 

The vitrinite model performed the best out of the 3, possibly due to the 

maceral group being considerably more abundant than the other 2, and because 

the vitrinite might have an easier structure to define (as it is simpler 

morphologically). The model had both high precision and high recall, which 

indicates that the model is correctly identifying most of the vitrinite in the 

samples. Since vitrinite can contain other macerals, the segmentation results could 

be refined further by subtracting the inertinite and liptinite results from it and 

adding a threshold segmentation step. However, this refining would remain 

limited due to the low recall from the other two models. 

However, due to the collotelinite objects containing/being adjacent to other 

objects (other macerals or noise), it is necessary to post-process the resulting 

images to clean the collotelinite objects for subsequent reflectance determination. 
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Unfortunately, it would not be possible to avoid this issue even with dataset 

expansion, as it is impossible to delineate a collotelinite for the dataset while 

automatically excluding the inclusions it may contain. If the inclusions were 

delineated and deleted, the resulting black pixels would change the appearance of 

the collotelinite, hampering the ability of the network to segment it. There is 

currently no way to deal with this issue completely. Other works have tried 

different approaches from this one. TIWARY et al. (2020) annotated triangular 

maceral group areas that belonged to a single group. This might make it easier for 

the network to learn the features belonging to the maceral group, but it would also 

carry the drawback of adding arbitrarily chosen areas that might not represent the 

real variety within the class. Moreover, using arbitrary areas as ground truth 

means the metrics evaluated will not reflect the performance of the model. 

It was decided to extensively annotate the maceral objects as accurately as 

humanly possible  so the network would be “used” to dealing with realistic, 

complex situations. Also, by having a more accurately annotated ground truth, the 

validation metrics would be more reflective of the actual performance of the 

model.  

To determine rank reflectance, the model doesn't need to identify all of the 

vitrinite; it is only required for most of its segmentation attempts to be correct. 

That means that precision is the more relevant parameter of the two for rank 

reflectance determination. Even though the vitrinite model had a higher precision 

than the collotelinite model, the collotelinite does present a more well-behaved 

reflectance distribution across the coalification process (as it is less likely to have 

inclusions like collodetrinite has). Because of that, it remains an adequate model 

for rank reflectance determination (ASTM D 2798, 2011; ICCP, 1998). 

On the other hand, when analyzing maceral composition, it is more critical 

to correctly identify as many of the macerals as possible. For this reason, recall is 

a more adequate metric than precision when considering models for area fraction 

determination. 

The inertinite model suffered, as mentioned before, from very high (over 

90%) precision and relatively low recall (around 40%). That means the model was 

correct in most segmentation attempts but couldn’t segment all the inertinites 

present (observed to happen to fusinite, semifusinite and inertodetrinite). Many 

other training attempts and parameter changes, not shown here, were performed to 

try to improve the model’s performance, but none of them was able to outperform 

the one presented here.  

Deep learning methods have the distinct ability to continuously improve 

their performance with a continuous expansion of the dataset used for training 

(LAQTIB et al., 2019). Since no change in the training parameters improved the 

model’s performance, the most logical step would be to expand the dataset with 

new images and samples rich in inertinite, expanding into non-coking coal 

samples that could have more inertinite.  
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The liptinite model faced a similar issue, and all that was said about the 

inertinite model also applies to it. It should be noted, however, that the liptinite 

model does have a few distinct issues of its own. Due to the sheer number of 

liptinites present in an image, it is almost impossible to annotate every single 

instance of liptinite available. The non-annotated liptinites become background 

and hinder the model’s learning. Another issue is that liptinite is the easiest 

macerals group to mistake for other objects (dirt, scratches, or mineral matter). 

During traditional coal petrography, the operator has access to fluorescence that 

can be used to identify liptinites in the most complex cases (PICKEL et al., 2017), 

which is a luxury this model never has, as it works solely on RLOM images. Also, 

because it is impossible to annotate every single liptinite present, any liptinite 

detected by the models that weren’t annotated will be considered a false positive. 

This means that the recall and the precision are very likely underestimated in this 

case. 

As is the case for the inertinite model, extensive work on expanding the 

dataset with lower-rank samples (lower than 1.0% vitrinite reflectance) rich in 

liptinites is the most logical way to improve the recall numbers for this macerals 

group. 

Unfortunately, the semifusinite model was not as successful as the 

collotelinite model (Table 13), despite both singling out very abundant individual 

macerals. This is possible because, despite both being abundant, semifusinite has 

a more complex and variable structure and would need to be more represented in 

the dataset to be adequately learned by the network. An annotation effort 

primarily focused on semifusinite would be fundamental to improve those results, 

which, in turn, could be combined with the inertinite results to achieve a 

quantitative evaluation that distinguishes both. 

Mask R-CNN makes its segmentation based on a multitude of different 

features of varying levels of abstraction. Even though it is not currently possible 

to extract which features were precisely used and their weights, they are sure to 

involve reflectance and texture features based on heterogeneity. The features are 

certain to be relevant to the collotelinite segmentation because the network was 

trained on actual collotelinite objects, allowing the network to learn its distinctive 

characteristic features. Compared to the earliest attempts (AGUS et al., 1994) at 

defining the macerals using texture parameters, CNN-based approaches have the 

advantage of considering thousands of different features at the same time and, due 

to the automated learning algorithm, determine which features it will use, leading 

to relevant but highly abstract features that a human operator would not be able to 

imagine or define. 

The focus on the dataset creation in a 0.97%-1.8% reflectance range reflects 

its industrial interest, even though it is understood that maceral segmentation 

should be easier in lower ranks, as the difference between the macerals groups is 

more pronounced. Other works have attempted maceral segmentation in lower 

rank ranges (IWASZENKO and RÓG, 2021)., which suggests that deep learning 
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can be a valuable and effective tool for semantic segmentation in a wide rank 

range. 

While both IWASZENKO and RÓG, 2021 and WANG et al., 2019 had 

better segmentation results than the ones presented in this work, this could be 

explained by several factors. The tagging performed in this work was much more 

extensive and reflective of the real ground truth than in IWASZENKO and RÓG, 

2021, which makes it more likely to results in lower metrics, while the images 

were captured in random positions, avoiding simpler images. In the case of 

WANG et al, 2019, the dataset focused on a lower 0.5-0.8% reflectance range, 

where the distinctions between the maceral groups are more pronounced and th 

distinction would be easier to make. 

Data augmentation techniques could also be implemented in the future in 

order the improve performance. However, it must be noted that maceral 

segmentation faces a few distinct problems. Due to the already very complex 

structures that macerals may present, it would be advisable to focus on data 

augmentation methods that merely flip or rotate the images, any variation that 

deforms the macerals is likely to be impact the training negatively. Another issue 

is that class imbalance would still be very difficult to correct, each maceral’s 

natural frequency in nature is very difficult. Since they will rarely appear by 

themselves in a single image, it is not possible to focus data augmentation on 

individually selected images to augment only desired classes. Thus, the maceral 

imbalance would be preserved as the data is augmented. 

Some preliminary data augmentation was done in this work; however, it 

surprisingly didn’t result in any performance improvement. This phenomenon is 

still being studied and data augmentation remains a test to be performed in the 

future. 

In summary, the vitrinite, inertinite, and liptinite group-level models were 

the more adequate ones to be used for the area fraction tests. In contrast, the 

collotelinite one was the most appropriate one to be used for the rank reflectance 

determination tests. 

 

5.2 Area fraction Results and Discussion 

Despite exciting results for maceral segmentation, most of the maceral 

analyses performed in coal petrography focus on obtaining maceral composition, 

not segmentation. Therefore, a method inspired by traditional point counting was 

developed to estimate the macerals composition based on the segmentation 

results. 

Once the main maceral groups have been segmented, it is possible to 

generate binary masks for each class, which allows for traditional image 

processing measurements, such as area fraction (Figure 71). But because vitrinite 

is annotated as a whole object and often contains other macerals, it is necessary to 

subtract the inertinite and liptinite from the vitrinite so as not to overestimate the 
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latter. Furthermore, a new segmentation can be performed by simply thresholding 

the vitrinite results in the 85 - 145 grey level range (corresponding to 

approximately 0.85%-1.85% reflectance range, slightly broader than the 0.97%-

1.8% range this work was concerned with) to eliminate undue residues (Figure 

72). The grey level range will be automatically determined in other lighting 

conditions depending the grey level- reflectance calibration done for it. These 

steps, therefore, should minimize vitrinite overestimation even further. 

 

Figure 71 - Original grey image for a 0.97% sample (a), original vitrinite 

segmentation results before processing (b), inertinite segmentation results (c), and 

liptinite results (d). 

 

 

Figure 72 - Vitrinite segmentation results before (a) and after (b) being segmented 

in the 85-145 grey level range. 
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Once the images have been processed, they can be used for area fraction 

measurements. A method was developed to emulate traditional point counting, to 

compare the results obtained here with what would be obtained by a specialist. 

For each binary image to be counted, a grid with 500 x 500 equidistantly 

distributed points was created and overlapped with the maceral group results (an 

example for vitrinite can be seen in Figure 73). This is done for all images of a 

sample and individually for each maceral group. In the end, the point fraction for 

each maceral group is understood as a representative of its area fraction.  

 

 

Figure 73- Vitrinite results after processing (a) intersected with a 500x500 points 

grid (b), resulting in numbers the points representative of the vitrinite composition (c). This 

was performed on both the ground truth (annotated images) and the results (segmented 

post-processed images). 

 

The ground truth for comparison was obtained directly from the annotations 

made on the images. The results obtained from a direct area measurement with no 

grid points were also calculated. The results can be seen in Table 15. 

 

 

 

 

Table 15 - Maceral group composition obtained by the models compared with that 

obtained from the dataset annotations. 

Sample/Point 
fraction 

Vitrinite (%) Inertinite(%) Liptinite(%) 

Sample E 
(annotation) 

93.25 6.71 0.03 

Sample E 
(model/grid 

points) 
97.54 2.28 0.18 

Sample E (model/ 
total area) 

96.13 3.67 0.20 
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Sample F 
(annotation) 

85.68 14.32 0.00 

Sample F 
(model/grid 

points) 
97.44 2.48 0.08 

Sample F (model/ 
total area) 

95.31 4.58 0.11 

Sample D 
(annotation) 

76.40 22.81 0.78 

Sample D 
(model/grid 

points)  
88.97 10.60 0.42 

Sample D (model/ 
total area) 

88.69 10.82 0.49 

Sample A 
(annotation) 

84.77 7.15 8.08 

Sample A 
(model/grid 

points) 
92.08 5.53 2.40 

Sample A (model/ 
total area) 

90.10 6.84 3.06 

 

The expected results reflect the test metrics of the inertinite and liptinite 

models. Due to their low recall, they cannot completely identify the maceral 

groups, which systematically underestimates both groups compared to the 

vitrinite. This method's results can’t be quantitively compared to traditional point 

counting. However, it should still have internal consistency in that it will still 

point out which samples are richer in which maceral groups, even if the actual 

numbers can’t be used for comparison.  

However, it can be seen that emulating the point counting method had 

minimal impact, as the area fraction is very similar to the one measured directly 

from the post-processed mask. The results obtained without grid points were 

slightly more accurate, as they underestimated the liptinite and inertinite less than 

the grid point method. This is probably due to vitrinite having a larger area on 

average, which makes the grid points favor it.  

An expansion of the dataset aiming at better recall rates for inertinite and 

liptinite remains the most logical solution to improve these results. A more 

oriented effort on annotating semifusinite and improving that model would allow 

it to be “split” from the total inertinite here and be quantified separately. 
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5.3 Collotelinite reflectance Determination  

To have a system capable of dealing with single component coals in the 

range of 0.97%-1.8%, it is necessary to refine the results obtained from the 

vitrinite model. As the microscope was calibrated and the image capture 

procedure was standardized for all samples, it is possible to translate the 

reflectance range into a grey level range. The first step is to intersect the mask 

generated by the model with the original image (Figure 74). The second step is to 

segment the resulting image's pixels by a threshold between 85 and 145 grey 

levels, the same as in the area fraction analysis. This range corresponds to a 

slightly broader reflectance range than the one this work concerned itself with 

(corresponding to approximately 0.85%-1.85%), this is done to account for the 

low and high standard deviation of grey level values in the samples. This 

procedure filters out noise, scratches, some transition/border pixels, and, 

potentially, even a few other segmentation mistakes.  

 

Figure 74 - Original grey image (a) intersected with the binary vitrinite result (b), 

resulting in a grey image containing only the model’s segmented vitrinite(c). Notice how 

the dark inner pixels of mineral matter were excluded in the process. 

 

That process is performed for all the images of each sample, so it is possible 

to obtain the grey level distribution of the collotelinite and convert it to a 

reflectance distribution using equation 12. 

The results for the mean and mode of the reflectance distributions and their 

comparison to the traditional method can be seen in Table 16 and Table 17. 

Table 16 - Results of the random collotelinite reflectance (Rr%) values, comparing the 

traditional and proposed (Mask R-CNN) methods for the four samples used to train the 

model. 

 

 Traditional Method 

(Mean) 

Mask R-CNN 

(Mean) 

Mask R-CNN 

(Mode) 

Sample E 1.20% 1.07% +- 0.14% 1.07% 

Sample F 1.20% 1.05% +- 0.15% 1.07% 

Sample D 1.04% 1.02% +- 0.13% 1.02% 

Sample A 0.97% 0.98% +- 0.13% 0.97% 
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Table 17 - Results of the random collotelinite reflectance (Rr%) values, comparing the 

traditional and proposed (Mask R-CNN) methods for the samples used to test the model. 

 Traditional Method 

(Mean) 

Mask R-CNN 

(Mean) 

Mask R-CNN 

(Mode) 

Sample M 1.80% 1.60% + - 0.25% 1.84% 

Sample L 1.51% 1.32% + - 0.24% 1.39% 

Sample K 1.50% 1.42% + - 0.22% 1.51% 

Sample J 1.47% 1.28% + - 0.18% 1.26% 

Sample I 1.42% 1.28% + - 0.24% 1.41% 

Sample H 1.26% 1.31% + - 0.24% 1.17% 

Sample G 1.15% 1.34% + - 0.30% 1.04% 

Sample C 1.08% 1.17% + - 0.26% 1.07% 

 

One of the first things to notice in these results is how the mean and the 

mode seemed to be in better agreement with each other for the samples used in 

training and had a smaller standard deviation (Table 16). Even though this was 

performed in images for those samples that were not used in training, it is still 

understandable that the network would perform better on samples that it was more 

familiar with. 

Another vital thing to notice is how the mode agrees better with the 

traditional method than the mean. That is noteworthy because the reflectance 

measurements standards (ASTM D 2798, 2011; ISO 7404-5, 2009; AS 2856.3, 

2000) advise the use of the mean instead of the mode. And yet, for this method, 

the mode seems closer to the traditional mean. 

To better understand why that would be the case, it was necessary to plot the 

reflectance distribution for all the samples. Figure 75 shows an example of such 

distribution for a 1.08% reflectance sample. 
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Figure 75 - Reflectance distribution for the 1.08% vitrinite reflectance sample C.  

 

The distribution behavior exhibited was the typical one for all samples. 

They always have a single peak related to the segmented vitrinite and what seems 

to be a variable noise baseline, both below and above the vitrinite peak reflectance 

when compared to what is expected from a traditional petrographer analysis 

(Figure 17). The traditional petrographer usually analysis yields a histogram for a 

single component coal that only contains the vitrinite peak. To better understand 

this baseline, it was necessary to inspect the segmentation results of all the 

samples to find the patterns of segmentation errors that could be responsible for it. 

Upon analyzing hundreds of images for different samples, the two major 

segmentation mistakes responsible for the broad reflectance distribution were 

finally identified. Figure 76 shows the rare case in which both error types were 

found in the same image. The first type of error (Figure 76c 1) is when the model 

segments a large collotelinite particle that might intercalate or juxtapose with 

other macerals, such as liptinites or small inertodetrinites. In this case, these 

macerals are segmented alongside the collotelinite object, contributing to the 

broadening of the reflectance distribution. The second type of error (Figure 76c 2) 

can be described as misclassified inertinite objects, which seems to happen 

occasionally, especially when inertinite particles are exceptionally homogeneous 

and have a smooth surface (which is the case of Figure 76c 2) and have a just 

slightly higher reflectance to that of vitrinite. 
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Figure 76 – Original image (a), binary ground truth for the collotelinite class (b), and 

the segmented collotelinite (c) for A. Figure 76c showcases the most common 

segmentation errors identified. Error 1 refers to maceral and mineral matter objects 

segmented alongside the collotelinite, and error 2 refers to inertinite objects misclassified 

as collotelinite. 

 

Type 1 errors could be fixed in a post-processing procedure similar to the 

area fraction results by subtracting from the collotelinite the inertinite and liptinite 

segmentation results. Unfortunately, since neither model achieved a high recall, 

their effect on improving the collotelinite results would be limited for now. 

However, that remains a possibility in the future. 

Type 2 errors can only be fixed upon improving the model, either by 

refining training parameters or expanding the dataset. 

The transition pixels, border pixels, scratches, dirt, mineral matter, and 

liptinite associated with type 1 errors are probably responsible for the low 

reflectance baseline of noise that can be seen below the vitrinite peak in Figure 75. 

On the other hand, bright mineral matter, small inertodetrinites, and misclassified 

inertinite associated with both type 1 and 2 errors can be responsible for the high 

reflectance baseline of noise that can be seen after the vitrinite peak. 

There would be many ways to treat the data found in Figure 75 to extract a 

representative reflectance value. One way would be to find the vitrinite peak 

automatically and extract its mean and mode. Another would be to model the 

noise baseline and subtract it from the distribution. However, the simplest way to 

obtain a representative value was to take the distribution mode over the mean. The 
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mode, unlike the mean, is impervious to the influence of the noise/segmentation 

errors and (as seen in Table 16 and Table 17) is in better agreement with the 

traditional method. Therefore, taking the mode as representative of the 

collotelinite reflectance distribution was chosen as the best and simplest way to 

handle this data. 

Plotting the distribution histogram and extracting the mode is one of the 

many ways to treat the data. Other techniques, including from other works in the 

literature, could improve collotelinite reflectance determination even further. 

Using a Full Maceral Reflectogram (FMR) (O'BRIEN et al., 2003) on these 

results to extract the collotelinite reflectance could prove beneficial, as the 

segmentation step already filters out most noise from other macerals groups and 

other vitrinite macerals. This would combine the strengths of both approaches, 

and it could be an interesting future test. 

It should be mentioned, however, that even if the segmentation were 

flawless, a perfect match between this method and the traditional method would 

still not be expected. The traditional method is a point-counting method, while 

this method segments areas. The conventional method can avoid borders, 

transition pixels, scratches, dirt, and relief effects, which allows its reflectance 

distribution to be much narrower than this method could ever achieve. By 

segmenting areas, a more heterogeneous and broader distribution will always be 

expected for this method. 

Once the mode was chosen as the best representation of the collotelinite 

reflectance, it was possible to focus on evaluating how much it differed from the 

traditionally obtained. The metric chosen to evaluate that was the root mean 

square error (RMSE), which is a classical measurement of how much two 

different sets of points differ. The RMSE of 0.0978% was calculated for all 

samples in Table 16 and Table 17, and it can be considered outstanding as it is 

close to the reproducibility of the standard method, 0.06% (ASTM D2798, 2011). 

Reproducibility means that if two operators measure the same sample on different 

days in different labs and other equipment, their discrepancy is acceptable if 

below that value. As this method uses an entirely different approach, any result 

within 0.06% around the reference reflectance should be considered outstanding. 

 Random mean reflectance was the reference reflectance used, as it is the 

only one comparable to the developed methodology. Maximum mean reflectance 

measurements involve rotating the sample, which does not happen in this 

approach. 

One possible limitation of this method is that it is more likely to "fail" or 

yield less reliable results in complex inertinite-rich samples if vitrinite and 

inertinite are harder to differentiate even by a human operator (usually, 

collotelinite vs. semifusinite). However, in those cases, the inertinite reflectance is 

expected to be similar to that of the vitrinite, which should limit any rank 

reflectance deviation. 
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As mentioned previously, this approach assumes a unimodal distribution of 

grey levels, which makes it unsuitable for dealing with blends containing coals 

with different ranks. But an analysis of grey level histogram should still indicate 

the presence of vitrinites of various ranks and allow for an estimation. 

The use of 200X images in the current work allows for easier and faster 

acquisition of focused images, making an automatic image acquisition step easier 

to implement in the future. However, unlike other works that elected to acquire 

500X images (WANG et al., 2019), this does come at the cost of reducing the 

information level contained in an image. It is likely that by acquiring 200X 

images, correct identification of fine macerals like micrinite might never be 

achievable.  

As the results obtained here are directly related to the quality of the 

segmentation, improving it is crucial to refining these results. While the expansion 

of the dataset is critical for any improvement, an expansion focusing on inertinites 

and liptinites seems to be the most beneficial to reflectance results. Once 

inertinites and liptinite models with a high recall have been obtained, they could 

be used to severely decrease the occurrence of type 1 and 2 errors (Figure 76), 

refining the reflectance distribution by minimizing the baseline noise (Figure 75).  

It is also essential to highlight the vast number of images used for training 

the models, with 260 images for five samples. Also, unlike many other works 

(CHAO et al., 1982; KUILI et al., 1988; O'BRIEN et al., 2003; TIWARY et al., 

2020; WANG et al., 2019) that attempted to determine rank reflectance, this 

method focused on segmenting the collotelinite maceral instead of the whole 

vitrinite maceral group, which provides a more accurate rank reflectance 

measurement according to the standards for vitrinite reflectance measurements 

(ASTM D 2798, 2011; ISO 7404-5, 2009; AS 2856.3, 2000).  

Another advantage to highlight is that the images were captured with a 

motorized stage microscope which stops at random positions in the samples 

according to the initial input for the stage setting, allowing the dataset to be as 

representative of an actual analysis as possible. Another important feature was 

that the root mean square of 0.0978% was obtained over 12 samples in the 0.97%-

1.8% range, even though the collotelinite model was trained with only five 

samples in the 0.97%-1.20% range. That indicates the future potential of this 

approach, as it could predict the vitrinite reflectance, even outside of the vitrinite 

reflectance range it was trained in. Therefore, it is expected that expansion and 

improvement of the dataset will be essential to refine the results found herein even 

further and to make this system more universally appliable. 

A summarized workflow detailing all the procedures performed on the 

results of the trained models can be seen in Figure 77. 
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Figure 77 - Workflow detailing how the results of the models were processed to 

obtain area fraction and rank reflectance results. 
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6 
Conclusions 

This work aimed to create an automated system capable of identifying and 

segmenting macerals and maceral groups. An extensive dataset was built and used 

to train many different models. The best results were obtained for the vitrinite, 

inertinite, liptinite maceral groups, and collotelinite individual maceral (89.23%, 

68.81%, 37.00%, 84.77% F1-score; respectively; 89.42%, 94.81%, 62.95%, 

83.72% precision; respectively; 89.04%, 54.01%, 26.20%, 85.84% recall; 

respectively). While optimization of the training parameters for all models, the 

liptinite model had a special optimization. For the liptinite model, the pixel size 

anchors the network uses to identify regions of interest were adapted to better 

encompass the observed size distribution of the liptinites. 

The results were considered satisfactory for both the vitrinite and 

collotelinite models but still underwhelming for the other two maceral groups. It 

is believed that a continuous and consistent dataset expansion is the most logical 

step toward improving those models. 

These results are also reflected in the area fraction results, as inertinite and 

liptinite remain underestimated due to their models’ low recall. This approach 

consistently overestimates the vitrinite while underestimating the other two 

maceral groups. This makes it impossible to be compared with the traditional 

point-counting method. However, comparing different samples within this method 

should still be possible. 

It was not possible in this study to develop a methodology to satisfactorily 

quantify the semifusinite, as the model had a very low recall and precision. 

Possibly due to its complexity and similarity to other macerals, the only way to 

improve that would be an extensive annotation of even more semifusinite objects. 

The collotelinite results, however, were good enough that they could be 

used to develop an additional rank determination method. After a short image 

processing step to refine these results, coal rank was assessed by selecting 

appropriate collotelinite pixels and selecting the mode of the grey values. 

The root mean square error (RMSE) between the reference rank values and 

the ones determined by this method was evaluated to be 0.0978%. This is a good 

agreement despite the inherent differences between both methodologies. More 

time invested in expanding the dataset of coal sample images could improve the 

overall performance of this approach even further. Nevertheless, this method 

proves to be a reliable tool for efficiently determining coal rank in the 0.97-1.8% 

range and could be a powerful tool to save time for coal petrography analyses, as 
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the computers used in this work could examine up to 400 images in about 10 

minutes, which would help coal petrographers do faster coal rank assessments. 

Many future steps are still available to improve this work. Besides the 

tagging for expansion of the dataset, developing an automatic method for treating 

the reflectance distribution and find the collotelinite peak could lead for the post 

processing no longer being necessary. That would also allow the rank reflectance 

determination module to deal with samples containing multiple vitrinite 

populations (peaks), that is, coal blends. As the vitrinite model and the 

collotelinite models had good metrics, it would be interesting to extract a size 

distribution of the particles, as it would take advantage of the instance 

segmentation performed with the models.  

Another possibility is using a more traditional method for maceral group 

identification, such as Coal Grain Analysis or Full Maceral Reflectogram, and 

focus the models on discriminating the macerals groups and subgroups 

afterwards. That would have the advantage of combining simpler reflectance-

based methods for the maceral group segmentation (which is maceral-based) with 

more sophisticated morphology-based method (Machine Learning) for an 

individual maceral segmentation (as individual macerals are defined based on 

their morphology).  

One more possibility is experimenting with other network architectures, 

possibly ones that focus on semantic segmentation. A simpler network for 

semantic segmentation might not require such an expansive dataset to produce 

better results. 
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8 
Appendix 

The author would like to add here the python code used for training the 

Mask R-CNN for the collotelinite model for future reference: 

# -*- coding: utf-8 -*- 

""" 

Created on Wed Sep 11 17:22:55 2019 

 

@author: julio 

""" 

import os 

import json 

import skimage.io 

import numpy as np 

import imgaug as ia 

import skimage.draw 

import skimage.color 

import skimage.transform 

from mrcnn.utils import Dataset 

from mrcnn.config import Config 

import imgaug.augmenters as iaa 

from mrcnn.model import MaskRCNN  

 

# Class that defines and loads the dataset 

class MyDataset(Dataset): 

    datadict = dict() 

    debug = False 

    def load_image(self,image_id):    
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        if image_id in self.datadict: 

            if self.debug:  

                print('load image ram dict :' + str(image_id) + '\n') 

            return self.datadict[image_id] 

        else: 

            if self.debug:  

                print('load image from disk :' + str(image_id) + '\n') 

            return super().load_image(image_id) 

    # Load the dataset definitions 

    def load_dataset(self, dataset_dir, subset, memory_buffer = True): 

        ''' 

        Load a subset of the dataset. 

     

        :param  dataset_dir:    Root directory of the datasete 

        :param  subset:         Subset to load: train or val 

        :return:                "Load a subset of the dataset" 

        ''' 

        # Define the classes 

        self.add_class("dataset", 1, "Collotelinite") 

        # Train or validation dataset? 

        assert subset in ["train", "val"] 

        # Define data locations 

        dataset_dir = os.path.join(dataset_dir, subset) 

        dataset_annots = dataset_dir + '/annots' 

        annotations = json.load(open(os.path.join(dataset_annots,  

                                                  "via_export_json.json"))) 

        annotations = list(annotations.values())  # don't need the dict keys 

        # The VIA tool saves images in the JSON even if they don't have any 

        # annotations. Skip unannotated images. 

        annotations = [a for a in annotations if a['regions']] 
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        # Find all images 

        # Add images 

        for a in annotations: 

            # Get the x, y coordinaets of points of the polygons that make up 

            # the outline of each object instance. There are stores in the 

shape_attributes. 

            class_id = [sub['id'] for sub in self.class_info] # find all class ids 

            class_name = [sub['name'] for sub in self.class_info] # find all class 

names 

            shape_points = [r['shape_attributes'] for r in a['regions']] 

            objects = [s['region_attributes'] for s in a['regions']] 

            # Finds the corresponding class id in the json 

            flag = False 

            k = 0 

            class_ids, polygons = [], [] 

            for n in objects: 

                k = k + 1 

                #position = list(n['Position'].keys()) # get the dict key = position 

of the maceral 

                #if len(position) > 0 and position[0] == 'Matrix': # check only the 

not empty position equal to "matrix" 

                try: 

                    # Maceral and maceral group 

                    #maceral_subgroup = list(n['Maceral Sub-Group'].keys()) # get 

the dict key = the major maceral sub-group 

                    #maceral_group = list(n['Maceral Group'].keys()) # get the dict 

key = the major maceral group 

                    maceral = list(n['Maceral'].keys()) # get the dict key = the major 

maceral 

                    if maceral is not None and len(maceral) > 0 and maceral[0] == 

'Collotelinite': # check only the not empty class and if the name of the maceral 

group matches one of the possible classes 

                        flag = True 

DBD
PUC-Rio - Certificação Digital Nº 1812763/CA



111 

 

                        polygons.append(shape_points[k - 1]) # get only the 

polygons that satisfy the previous conditions 

                        ids = class_id[1] # get maceral group class id 

                        class_ids.append(ids) # get all maceral group class ids 

                         

                except KeyError: 

                    print('Image name:', a['filename']) 

                    print('A Maceral is missing!') 

            # Load_mask() needs the image size to convert polygons to masks. 

            image_path = os.path.join(dataset_dir + '/images', a['filename']) 

            image = skimage.io.imread(image_path) 

            height, width = image.shape[:2] 

            # Add to dataset 

            if flag: 

                self.add_image( 

                    "dataset", 

                    image_id = a['filename'],  # use file name as a unique image id 

                    path = image_path, 

                    width = width, height = height, 

                    polygons = polygons, 

                    class_ids = class_ids) 

                '''# Add image to dictionay 

                if memory_buffer and image_id not in self.datadict: 

                    self.datadict[image_id] = self.load_image_path(img_path)''' 

    def load_image_path(self, img_path): 

            '''Load the specified image and return a [H,W,3] Numpy array. 

            ''' 

            # Load image 

            image = skimage.io.imread(img_path) 

            # If grayscale. Convert to RGB for consistency. 

            if image.ndim != 3: 
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                image = skimage.color.gray2rgb(image) 

            # If has an alpha channel, remove it for consistency 

            if image.shape[-1] == 4: 

                image = image[..., :3] 

            return image 

 

    # load the masks for an image 

    def load_mask(self, image_id): 

        ''' 

        Generate instance masks for an image. 

     

        :param  image_id:       Image ID 

        :return masks:          A bool array of shape [height, width, instance 

count] with one mask per instance 

        :return class_ids:      A 1D array of class IDs of the instance masks 

        ''' 

        # Get details of image 

        info = self.image_info[image_id] 

        class_ids = info['class_ids'] 

        # Convert polygons to a bitmap mask of shape 

        # [height, width, instance_count] 

        mask = np.zeros([info["height"], info["width"], len(info["polygons"])], 

dtype=np.uint8) 

        for i, p in enumerate(info["polygons"]): 

            # Get indexes of pixels inside the polygon and set them to 1 

            rr, cc = skimage.draw.polygon(p['all_points_y'], p['all_points_x']) 

            mask[rr, cc, i] = 1 

        # Return mask, and array of class IDs of each instance. 

        return mask, np.asarray(class_ids, dtype = 'int32') 

      

    # Load an image reference 

DBD
PUC-Rio - Certificação Digital Nº 1812763/CA



113 

 

    def image_reference(self, image_id): 

        ''' 

        Return the path of the image. 

     

        :param  image_id:       Image ID 

        :return info['path']:   Image path 

        ''' 

        info = self.image_info[image_id] 

        return info['path'] 

 

# Define a configuration for the model 

class ModelConfig(Config): 

    # Define the name of the configuration 

    NAME = "Coal_cfg" 

    # Number of classes (background + classes) 

    NUM_CLASSES = 1 + 1 

    # NUMBER OF GPUs to use. When using only a CPU, this needs to be 

set to 1 

    GPU_COUNT = 4 

    # Number of images to train with on each GPU 

    IMAGES_PER_GPU = 1 

    # Total number os images 

    TOTAL_IMAGES = 172 

    # Number of training steps per epoch 

    # STEPS_PER_EPOCH = TOTAL_IMAGES / BATCH_SIZE where 

BATCH_SIZE = IMAGES_PER_GPU * GPU_COUNT 

    STEPS_PER_EPOCH = 

int(TOTAL_IMAGES/(IMAGES_PER_GPU*GPU_COUNT))  

    # Learning rate 

    LEARNING_RATE = 0.001 

    # Gradient norm clipping 

    GRADIENT_CLIP_NORM = 5.0 
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    # Minimum probability value to accept a detected instance 

    # ROIs below this threshold are skipped 

    DETECTION_MIN_CONFIDENCE = 0 # was 0.7 

    # Non-maximum suppression threshold for detection 

    DETECTION_NMS_THRESHOLD = 0.3 

    # Non-max suppression threshold to filter RPN proposals. 

    # You can increase this during training to generate more propsals. 

    RPN_NMS_THRESHOLD = 0.9 

    # How many anchors per image to use for RPN training 

    RPN_TRAIN_ANCHORS_PER_IMAGE = 512 # was 256 

    # Maximum number of ground truth instances to use in one image 

    MAX_GT_INSTANCES = 400 # was 100 

    # Max number of final detections 

    DETECTION_MAX_INSTANCES = 450 # was 100 

    # Image mean (RGB) 

    MEAN_PIXEL = np.array([64.0, 64.0, 64.0]) 

    # Input image resizing 

    # Image size must be dividable by 2 at least 6 times  

    # to avoid fractions when downscaling and upscaling. 

    # For example, use 256, 320, 384, 448, 512, ... etc. 

    IMAGE_RESIZE_MODE = "square" 

    IMAGE_MIN_DIM = 1024 

    IMAGE_MAX_DIM = 1344 

 

def main(): 

    # Construct the argument 

    path_data = 

'/mnt/panowin/hd/UsersPanoramix/Richard/python/script/Dataset/Coal/via_taggin

g/maceral_group/Vitrinite' 

    path_model = '/mnt/panowin/hd/UsersPanoramix/Richard/python/pre-

trained_models/mask_rcnn_coco.h5' 

    from_zero = True 
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    save_period = 5 

    epochs = 1300 

    layers = 'all' 

    # heads: The RPN, classifier and mask heads of the network 

    # all:   All the layers 

    # 3+:    Train Resnet stage 3 and up 

    # 4+:    Train Resnet stage 4 and up 

    # 5+:    Train Resnet stage 5 and up 

 

    # Prepare train set 

    print ('Loading dataset.......') 

    train_set = MyDataset() 

    train_set.load_dataset(path_data, 'train') 

    train_set.prepare() 

    print('Train: %d' % len(train_set.image_ids)) 

    # Prepare val set 

    val_set = MyDataset() 

    val_set.load_dataset(path_data, 'val') 

    val_set.prepare() 

    print('Test: %d' % len(val_set.image_ids)) 

    # Prepare config 

    config = ModelConfig() 

    config.display() 

    # Define the model 

    print ('Loading Model.......') 

    model = MaskRCNN(mode = 'training', model_dir =\ 

        '/mnt/panowin/hd/UsersPanoramix/Richard/python/script/', config = 

config) 

    # Load weights (mscoco) and exclude the output layers 

    if from_zero: 

        print ('Loading weights from zero.......') 
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        model.load_weights(path_model, by_name = True,  

                            exclude = ["mrcnn_class_logits",  

                                        "mrcnn_bbox_fc",  "mrcnn_bbox", 

"mrcnn_mask"]) 

    else:  

        print ('Loading weights from last checkpoint.......') 

        model.load_weights(model.find_last(), by_name = True)  

    # Train weights 

    print ('Start trainning session .......') 

    model.train(train_set, val_set, learning_rate = 

config.LEARNING_RATE, epochs = epochs,  

                layers = layers, chkpoint_save_period = save_period) 

     

if __name__ == '__main__': 

    main() 
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